Skip to main content
Log in

Performance analysis of simultaneous dense coding protocol under decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The simultaneous dense coding (SDC) protocol is useful in designing quantum protocols. We analyze the performance of the SDC protocol under the influence of noisy quantum channels. Six kinds of paradigmatic Markovian noise along with one kind of non-Markovian noise are considered. The joint success probability of both receivers and the success probabilities of one receiver are calculated for three different locking operators. Some interesting properties have been found, such as invariance and symmetry. Among the three locking operators we consider, the SWAP gate is most resistant to noise and results in the same success probabilities for both receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bowen, G.: Classical information capacity of superdense coding. Phys. Rev. A 63, 022302 (2001)

    Article  ADS  Google Scholar 

  3. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001)

    Article  ADS  Google Scholar 

  4. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  5. Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71, 012311 (2005)

    Article  ADS  Google Scholar 

  6. Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72, 012329 (2005)

    Article  ADS  Google Scholar 

  7. Situ, H.Z., Qiu, D.W.: Simultaneous dense coding. J. Phys. A Math. Theor. 43, 055301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Situ, H.Z., Qiu, D.W., Mateus, P., Paunkovic, N.: Secure N-dimensional simultaneous dense coding and applications. Int. J. Quantum Inf. 13, 1550051 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Situ, H.Z.: Controlled simultaneous teleportation and dense coding. Int. J. Theor. Phys. 53, 1003 (2014)

    Article  MATH  Google Scholar 

  10. Zhang, C., Situ, H.Z., Li, Q., He, G.P.: Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states. Int. J. Quantum Inf. 14, 1650023 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13, 59 (2014)

    Article  ADS  Google Scholar 

  12. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15, 4805 (2016)

    Article  ADS  MATH  Google Scholar 

  19. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yeo, Y., An, J.H., Oh, C.H.: Non-Markovian effects on quantum-communication protocols. Phys. Rev. A 82, 032340 (2010)

    Article  ADS  Google Scholar 

  21. Hao, X., Zhu, S.: Enhanced quantum teleportation in non-Markovian environments. Int. J. Quantum Inf. 10, 1250051 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, P., Zhu, J., He, G., Zeng, G.: Study on the security of discrete-variable quantum key distribution over non-Markovian channels. J. Phys. B At. Mol. Opt. Phys. 45, 135501 (2012)

    Article  ADS  Google Scholar 

  23. Jun, J.W.: Non-Markovian effects on entanglement swapping. J. Korean Phys. Soc. 60, 550 (2012)

    Article  ADS  Google Scholar 

  24. Jun, J.W.: Non-Markovian effects on multiparticle entanglement swapping. Eur. Phys. J. D 67, 237 (2013)

    Article  ADS  Google Scholar 

  25. Li, J.F., Liu, J.M., Xu, X.Y.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14, 3465 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Özdemir, Ş.K., Bartkiewicz, K., Liu, Y.X., Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76, 042325 (2007)

    Article  ADS  Google Scholar 

  28. Bartkiewicz, K., Černoch, A., Lemr, K., Miranowicz, A., Nori, F.: Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks. Phys. Rev. A 93, 062345 (2016)

    Article  ADS  Google Scholar 

  29. Bartkiewicz, K., Černoch, A., Lemr, K., Miranowicz, A., Nori, F.: Experimental temporal quantum steering. Sci. Rep. 6, 38076 (2016)

    Google Scholar 

  30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the reviewers and the editors for their invaluable comments and detailed suggestions that helped to improve the quality of the present paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61502179, 61472452, 11647140), the Natural Science Foundation of Guangdong Province of China (Grant No. 2014A030310265), the Science Foundation for Young Teachers of Wuyi University (Grant No. 2015zk01) and the Doctoral Research Foundation of Wuyi University (Grant No. 2017BS07). H.Z. Situ is sponsored by the State Scholarship Fund of the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haozhen Situ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zhang, C. & Situ, H. Performance analysis of simultaneous dense coding protocol under decoherence. Quantum Inf Process 16, 227 (2017). https://doi.org/10.1007/s11128-017-1677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1677-9

Keywords

Navigation