Skip to main content

Advertisement

Log in

Stomatal, mesophyll and biochemical limitations to photosynthesis and their relationship with leaf structure over an elevation gradient in two conifers

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic responses across complex elevational gradients provides insight into fundamental processes driving responses of plant growth and net primary production to environmental change. Gas exchange of needles and twig water potential were measured in two widespread coniferous tree species, Pinus contorta and Picea engelmannii, over an 800-m elevation gradient in southeastern Wyoming, USA. We hypothesized that limitations to photosynthesis imposed by mesophyll conductance (gm) would be greatest at the highest elevation sites due to higher leaf mass per area (LMA) and that estimations of maximum rate of carboxylation (Vcmax) without including gm would obscure elevational patterns of photosynthetic capacity. We found that gm decreased with elevation for P. contorta and remained constant for P. engelmannii, but in general, limitation to photosynthesis by gm was small. Indeed, estimations of Vcmax when including gm were equivalent to those estimated without including gm and no correlation was found between gm and LMA nor between gm and leaf N. Stomatal conductance (gs) and biochemical demand for CO2 were by far the most limiting processes to photosynthesis at all sites along the elevation gradient. Photosynthetic capacity (A) and gs were influenced strongly by differences in soil water availability across the elevation transect, while gm was less responsive to water availability. Based on our analysis, variation in gm plays only a minor role in driving patterns of photosynthesis in P. contorta and P. engelmannii across complex elevational gradients in dry, continental environments of the Rocky Mountains and accurate modeling of photosynthesis, growth and net primary production in these forests may not require detailed estimation of this trait value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study will be openly available at Wyoscholar, a repository service that collects, preserves, and provides access to research data from the University of Wyoming. The data are indexed at https://doi.org/10.15786/22798433

References

  • Bahar NHA, Hayes L, Scafaro AP, Atkin OK, Evans JR (2018) Mesophyll conductance does not contribute to greater photosynthetic rate per unit nitrogen in temperate compared with tropical evergreen wet-forest tree leaves. New Phytol 218(2):492–505. https://doi.org/10.1111/nph.15031

    Article  CAS  PubMed  Google Scholar 

  • Baltzer JL, Day NJ, Walker XJ, Greene D, Mack MC, Alexander HD, Arseneault D, Barnes J, Bergeron Y, Boucher Y, Bourgeau-Chavez L, Brown CD, Carrière S, Howard BK, Gauthier S, Parisien M-A, Reid KA, Rogers BM, Roland C, Sirois L, Stehn S, Thompson DK, Turetsky MR, Veraverbeke S, Whitman E, Yang J, Johnstone JF (2021) Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proc Nat Acad Sci U S A 118(45):e2024872118. https://doi.org/10.1073/pnas.2024872118

    Article  CAS  Google Scholar 

  • Barbour MM, Warren CR, Farquhar GD, Forrester GUY, Brown H (2010) Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant Cell Environ 33(7):1176–1185

    PubMed  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130(4):1992–1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bickford CP, Mcdowell NG, Erhardt EB, Hanson DT (2009) High-frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma. Plant Cell Environ 32(7):796–810

    Article  CAS  PubMed  Google Scholar 

  • Bown HE, Watt MS, Mason EG, Clinton PW, Whitehead D (2009) The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata. Tree Physiol 29(9):1143–1151. https://doi.org/10.1093/treephys/tpp051

    Article  CAS  PubMed  Google Scholar 

  • Cernusak LA, Ubierna N, Winter K, Holtum JA, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200(4):950–965

    Article  CAS  PubMed  Google Scholar 

  • De Lucia EH, Whitehead D, Clearwater MJ (2003) The relative limitation of photosynthesis by mesophyll conductance in co-occurring species in a temperate rainforest dominated by the conifer Dacrydium cupressinum. Funct Plant Biol 30(12):1197–1204

    Article  PubMed  Google Scholar 

  • Deans RM, Farquhar GD, Busch FA (2019) Estimating stomatal and biochemical limitations during photosynthetic induction. Plant Cell Environ 42(12):3227–3240. https://doi.org/10.1111/pce.13622

    Article  CAS  PubMed  Google Scholar 

  • Duursma RA (2015) Plantecophys—an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10(11):e0143346. https://doi.org/10.1371/journal.pone.0143346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ethier G, Livingston N (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27(2):137–153

    Article  CAS  Google Scholar 

  • Evans JR (2021) Mesophyll conductance: walls, membranes and spatial complexity. New Phytol 229(4):1864–1876. https://doi.org/10.1111/nph.16968

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110(2):339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans JR, Von Caemmerer S (2013) Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ 36(4):745–756

    Article  CAS  PubMed  Google Scholar 

  • Evans J, Sharkey T, Berry J, Farquhar G (1986) Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Funct Plant Biol 13(2):281–292

    Article  CAS  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol 11(6):539–552

    Article  CAS  Google Scholar 

  • Farquhar GD, Cernusak LA (2012) Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ 35(7):1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90. https://doi.org/10.1007/bf00386231

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40(1):503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443

    Article  CAS  Google Scholar 

  • Feng Q, Centritto M, Cheng R, Liu S, Shi Z (2013) Leaf functional trait responses of Quercus aquifolioides to high elevations. Int J Agric Biol 15(1):69–75

    CAS  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6(3):269–279. https://doi.org/10.1055/s-2004-820867

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30(10):1284–1298

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmes J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31(5):602–621

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194:70–84. https://doi.org/10.1016/j.plantsci.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Carriquí M, Coopman RE, Gago J, Galmés J, Martorell S, Morales F, Diaz-Espejo A (2014) Stomatal and mesophyll conductances to CO2 in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change? Plant Sci 226:41–48. https://doi.org/10.1016/j.plantsci.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü (2016) Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ 39(5):965–982. https://doi.org/10.1111/pce.12622

    Article  CAS  PubMed  Google Scholar 

  • Gago J, Daloso DM, Carriquí M, Nadal M, Morales M, Araújo WL, Nunes-Nesi A, Flexas J (2020) Mesophyll conductance: the leaf corridors for photosynthesis. Biochem Soc Trans 48(2):429–439

    Article  CAS  PubMed  Google Scholar 

  • Geber MA, Dawson TE (1997) Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, Polygonum arenastrum. Oecologia 109(4):535–546. https://doi.org/10.1007/s004420050114

    Article  CAS  PubMed  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28(7):834–849. https://doi.org/10.1111/j.1365-3040.2005.01333.x

    Article  CAS  Google Scholar 

  • Guo J, Beverly DP, Mercer JJ, Cook CS, Ewers BE, Williams DG (2022) Topographic controls on stomatal and mesophyll limitations to photosynthesis in two subalpine conifers. Int J Plant Sci 183(3):205–219. https://doi.org/10.1086/718050

    Article  Google Scholar 

  • Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR (2009) Influence of leaf dry mass per area, CO2, and irradiance on mesophyll conductance in sclerophylls. J Exp Bot 60(8):2303–2314. https://doi.org/10.1093/jxb/erp021

    Article  CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Smith WK (1999) Seedling occurrence in alpine treeline conifers: a case study from the central Rocky Mountains, USA. Acta Oecologica 20(3):219–224

    Article  Google Scholar 

  • Hultine K, Marshall J (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Knight DH, Jones GP, Reiners WA, Romme WH (2014) Mountains and plains: the ecology of Wyoming landscapes. Yale University Press

    Google Scholar 

  • Kogami H, Hanba YT, Kibe T, Terashima I, Masuzawa T (2001) CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant Cell Environ 24(5):529–538

    Article  CAS  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22(11):569–574. https://doi.org/10.1016/j.tree.2007.09.006

    Article  PubMed  Google Scholar 

  • Körner C, Bannister P, Mark AF (1986) Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69(4):577–588. https://doi.org/10.1007/BF00410366

    Article  PubMed  Google Scholar 

  • Körner C, Farquhar GD, Roksandic Z (1988) A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 74(4):623–632. https://doi.org/10.1007/BF00380063

    Article  PubMed  Google Scholar 

  • Körner C, Neumayer M, Menendez-Riedl SP, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora 182(5):353–383. https://doi.org/10.1016/S0367-2530(17)30426-7

    Article  Google Scholar 

  • Ma WT, Tcherkez G, Wang XM, Schäufele R, Schnyder H, Yang Y, Gong XY (2021) Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytol 229(3):1326–1338. https://doi.org/10.1111/nph.16958

    Article  CAS  PubMed  Google Scholar 

  • Medlyn BE, Badeck FW, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, De Angelis P, Forstreuter M, Jach ME, Kellomäki S, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jstbid PG (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22(12):1475–1495. https://doi.org/10.1046/j.1365-3040.1999.00523.x

    Article  CAS  Google Scholar 

  • Monson RK, Sparks JP, Rosenstiel TN, Scott-Denton LE, Huxman TE, Harley PC, Turnipseed AA, Burns SP, Backlund B, Hu J (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 146(1):130–147

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot. https://doi.org/10.1093/jxb/erp036

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Flexas J, Peñuelas J (2011) Evergreens favored by higher responsiveness to increased CO2. Trends Ecol Evol 26(3):136–142. https://doi.org/10.1016/j.tree.2010.12.012

    Article  PubMed  Google Scholar 

  • Peguero-Pina JJ, Flexas J, Galmés J, Niinemets Ü, Sancho-Knapik D, Barredo G, Villarroya D, Gil-Pelegrín E (2012) Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant Cell Environ 35(12):2121–2129. https://doi.org/10.1111/j.1365-3040.2012.02540.x

    Article  CAS  PubMed  Google Scholar 

  • Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández JE, Sebastiani L, Diaz-Espejo A (2014) Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J Exp Bot 65(12):3143–3156. https://doi.org/10.1093/jxb/eru160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potts DL, Minor RL, Braun Z, Barron-Gafford GA (2017) Photosynthetic phenological variation may promote coexistence among co-dominant tree species in a Madrean sky island mixed conifer forest. Tree Physiol 37(9):1229–1238. https://doi.org/10.1093/treephys/tpx076

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Read QD, Moorhead LC, Swenson NG, Bailey JK, Sanders NJ (2014) Convergent effects of elevation on functional leaf traits within and among species. Funct Ecol 28(1):37–45. https://doi.org/10.1111/1365-2435.12162

    Article  Google Scholar 

  • Reich PB, Koike T, Gower ST, Schoettle AW (1995) 8 - Causes and Consequences of Variation in Conifer Leaf Life-Span. In: Smith WK, Hinckley TM (eds) Ecophysiology of Coniferous Forests. Academic Press, San Diego, pp 225–254. https://doi.org/10.1016/B978-0-08-092593-6.50013-X

    Chapter  Google Scholar 

  • Roeske CA, O’Leary MH (1984) Carbon isotope effects on enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry 23(25):6275–6284. https://doi.org/10.1021/bi00320a058

    Article  CAS  Google Scholar 

  • Scafaro AP, Von Caemmerer S, Evans JR, Atwell BJ (2011) Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant Cell Environ 34(11):1999–2008

    Article  CAS  PubMed  Google Scholar 

  • Stangl ZR, Tarvainen L, Wallin G, Ubierna N, Räntfors M, Marshall JD (2019) Diurnal variation in mesophyll conductance and its influence on modelled water-use efficiency in a mature boreal Pinus sylvestris stand. Photosynth Res. https://doi.org/10.1007/s11120-019-00645-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Stangl ZR, Tarvainen L, Wallin G, Marshall JD (2022) Limits to photosynthesis: seasonal shifts in supply and demand for CO2 in Scots pine. New Phytol 233(3):1108–1120. https://doi.org/10.1111/nph.17856

    Article  CAS  PubMed  Google Scholar 

  • Stewart J, El Abidine AZ, Bernier P (1995) Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought. Tree Physiol 15(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Gu L, Dickinson RE, Norby RJ, Pallardy SG, Hoffman FM (2014) Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc Natl Acad Sci U S A 111(44):15774–15779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tazoe Y, Von Caemmerer S, Estavillo GM, Evans JR (2011) Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant Cell Environ 34(4):580–591

    Article  PubMed  Google Scholar 

  • Tissue DT, Griffin KL, Turnbull MH, Whitehead D (2005) Stomatal and non-stomatal limitations to photosynthesis in four tree species in a temperate rainforest dominated by Dacrydium cupressinum in New Zealand. Tree Physiol 25(4):447–456. https://doi.org/10.1093/treephys/25.4.447

    Article  CAS  PubMed  Google Scholar 

  • Tosens T, Nishida K, Gago J, Coopman Rafael E, Cabrera Hernán M, Carriquí M, Laanisto L, Morales L, Nadal M, Rojas R, Talts E, Tomas M, Hanba Y, Niinemets Ü, Flexas J (2015) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209(4):1576–1590. https://doi.org/10.1111/nph.13719

    Article  CAS  PubMed  Google Scholar 

  • Van de Water PK, Leavitt SW, Betancourt JL (2002) Leaf δ13C variability with elevation, slope aspect, and precipitation in the southwest United States. Oecologia 132(3):332–343. https://doi.org/10.1007/s00442-002-0973-x

    Article  PubMed  Google Scholar 

  • Veromann-Jürgenson L-L, Tosens T, Laanisto L, Niinemets Ü (2017) Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living! J Exp Bot 68(7):1639–1653

    Article  PubMed Central  PubMed  Google Scholar 

  • Veromann-Jürgenson L-L, Brodribb TJ, Niinemets Ü, Tosens T (2020) Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. J Exp Bot 71(16):4958–4971. https://doi.org/10.1093/jxb/eraa231

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153(4):376–387. https://doi.org/10.1007/bf00384257

    Article  Google Scholar 

  • von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant, Cell Environ 38(4):629–637. https://doi.org/10.1111/pce.12449

    Article  CAS  Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195(1):88–97. https://doi.org/10.1007/BF00206296

    Article  Google Scholar 

  • Warren CR, McGrath JF, Adams MA (2001) Water availability and carbon isotope discrimination in conifers. Oecologia 127(4):476–486. https://doi.org/10.1007/s004420000609

    Article  PubMed  Google Scholar 

  • Warren C, Ethier G, Livingston N, Grant N, Turpin D, Harrison D, Black T (2003) Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) canopies. Plant Cell Environ 26(8):1215–1227

    Article  CAS  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313(5789):940–943

    Article  CAS  PubMed  Google Scholar 

  • Whitehead D, Barbour MM, Griffin KL, Turnbull MH, Tissue DT (2011) Effects of leaf age and tree size on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. cliffortiodes). Tree Physiol 31(9):985–996

    Article  CAS  PubMed  Google Scholar 

  • Wingate L, Seibt U, Moncrieff JB, Jarvis PG, Lloyd J (2007) Variations in 13C discrimination during CO2 exchange by Picea sitchensis branches in the field. Plant Cell Environ 30(5):600–616

    Article  CAS  PubMed  Google Scholar 

  • Woodruff DR, Meinzer FC, Lachenbruch B, Johnson DM (2009) Coordination of leaf structure and gas exchange along a height gradient in a tall conifer. Tree Physiol 29(2):261–272

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428(6985):821–827. https://doi.org/10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007) Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann Bot 99(5):1003–1015. https://doi.org/10.1093/aob/mcl066

    Article  PubMed  Google Scholar 

  • Wu J, Shi Z, Liu S, Centritto M, Cao X, Zhang M, Zhao G (2020) Photosynthetic capacity of male and female Hippophae rhamnoides plants along an elevation gradient in eastern Qinghai-Tibetan Plateau. China Tree Physiology 41(1):76–88. https://doi.org/10.1093/treephys/tpaa105

    Article  CAS  Google Scholar 

  • Yu L, Song M, Xia Z, Korpelainen H, Niinemets Ü, Li C (2019) Elevated temperature differently affects growth, photosynthetic capacity, nutrient absorption and leaf ultrastructure of Abies faxoniana and Picea purpurea under intra- and interspecific competition. Tree Physiol 39(8):1342–1357. https://doi.org/10.1093/treephys/tpz044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jazlynn Hall for her assistance with field work and Chris Feng for comments on this paper and Jason Mercier for helping with sites precipitation and temperature data. We also thank Craig Cook for his help on making the reference gases and other staff members in Stable Isotope Facility at University of Wyoming for assistance with stable isotope analysis.

Funding

This work was supported by the National Science Foundation under award no EPS-1208909.

Author information

Authors and Affiliations

Authors

Contributions

JG and DGW conceived and designed the experiments. JG and DPB conducted the field sampling work and JG did the lab measurement, analyzed the data, JG and DGW wrote the manuscript and all authors provided feedback on the manuscript prior to submission.

Corresponding author

Correspondence to Jiemin Guo.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 402 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Beverly, D.P., Ewers, B.E. et al. Stomatal, mesophyll and biochemical limitations to photosynthesis and their relationship with leaf structure over an elevation gradient in two conifers. Photosynth Res 157, 85–101 (2023). https://doi.org/10.1007/s11120-023-01022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-023-01022-0

Keywords

Navigation