Skip to main content
Log in

Surface Composition and Formulation Heterogeneity of Protein Solids Produced by Spray Drying

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to determine the effects of saccharide-containing excipients on the surface composition of spray-dried protein formulations and their matrix heterogeneity.

Methods

Spray-dried formulations of myoglobin or bovine serum albumin (BSA) were prepared without excipient or with sucrose, trehalose, or dextrans. Samples were characterized by solid-state Fourier-transform infrared spectroscopy (ssFTIR), differential scanning calorimetry (DSC), size exclusion chromatography (SEC) and scanning electron microscopy (SEM). Protein surface coverage was determined by X-ray photoelectron spectroscopy (XPS), while conformational differences were determined by solid-state hydrogen/deuterium exchange with mass spectrometry (ssHDX-MS).

Results

Structural differences were exhibited with the inclusion of different excipients, with dextran formulations indicating perturbation of secondary structure. XPS indicated sucrose and trehalose reduced protein surface concentration better than dextran-containing formulations. Using ssHDX-MS, the amount of deuterium incorporation and populations present were the largest in the samples processed with dextrans. Linear correlation was found between protein surface coverage and ssHDX-MS peak area (R2 = 0.853) for all formulations with saccharide-containing excipients.

Conclusions

Lower molecular weight species of saccharides tend to enrich the particle surface and reduce protein concentration at the air-liquid interface, resulting in reduced population heterogeneity and improved physical stability, as identified by ssHDX-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carpenter JF, Chang BS, Garzon-Rodriguez W, Randolph TW. Rational design of stable lyophilized protein formulations: theory and practice. In: Carpenter JF, Manning MC, editors. Rational Design of Stable Protein Formulations: theory and practice. Boston: Springer US; 2002. p. 109–33.

    Chapter  Google Scholar 

  2. Langford A, Bhatnagar B, Walters R, Tchessalov S, Ohtake S. Drying technologies for biopharmaceutical applications: recent developments and future direction. Dry Technol. 2018;36(6):677–84.

    Article  CAS  Google Scholar 

  3. Gaiani C, Mullet M, Arab-Tehrany E, Jacquot M, Perroud C, Renard A, et al. Milk proteins differentiation and competitive adsorption during spray-drying. Food Hydrocoll. 2011;25(5):983–90.

    Article  CAS  Google Scholar 

  4. Kim EHJ, Chen XD, Pearce D. Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. J Food Eng. 2009;94(2):169–81.

    Article  CAS  Google Scholar 

  5. Maa Y-F, Prestrelski SJ. Biopharmaceutical powders particle formation and formulation considerations. Curr Pharm Biotechnol. 2000;1(3):283–302.

    Article  CAS  PubMed  Google Scholar 

  6. Lee G. Spray-drying of proteins. In: Carpenter JF, Manning MC, editors. Rational Design of Stable Protein Formulations: theory and practice. Boston: Springer US; 2002. p. 135–58.

    Chapter  Google Scholar 

  7. White S, Bennett DB, Cheu S, Conley PW, Guzek DB, Gray S, et al. EXUBERA®: pharmaceutical development of a novel product for pulmonary delivery of insulin. Diabetes Technol Ther. 2005;7(6):896–906.

    Article  CAS  PubMed  Google Scholar 

  8. Abdul-Fattah AM, Kalonia DS, Pikal MJ. The challenge of drying method selection for protein pharmaceuticals: product quality implications. J Pharm Sci. 2007;96(8):1886–916.

    Article  CAS  PubMed  Google Scholar 

  9. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    Article  PubMed  Google Scholar 

  10. Webb SD, Golledge SL, Cleland JL, Carpenter JF, Randolph TW. Surface adsorption of recombinant human interferon-γ in lyophilized and spray-lyophilized formulations. J Pharm Sci. 2002;91(6):1474–87.

    Article  CAS  PubMed  Google Scholar 

  11. Ameri M, Maa Y-F. Spray drying of biopharmaceuticals: stability and process considerations. Dry Technol. 2006;24(6):763–8.

    Article  CAS  Google Scholar 

  12. Patapoff TW, Esue O. Polysorbate 20 prevents the precipitation of a monoclonal antibody during shear. Pharm Dev Technol. 2009;14(6):659–64.

    Article  CAS  PubMed  Google Scholar 

  13. Moussa EM, Wilson NE, Zhou QT, Singh SK, Nema S, Topp EM. Effects of drying process on an IgG1 monoclonal antibody using solid-state hydrogen deuterium exchange with mass spectrometric analysis (ssHDX-MS). Pharm Res. 2018;35(1):12.

    Article  PubMed  Google Scholar 

  14. Wilson NE, Topp EM, Zhou QT. Effects of drying method and excipient on structure and stability of protein solids using solid-state hydrogen/deuterium exchange mass spectrometry (ssHDX-MS). Int J Pharm. 2019;567:118470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moorthy BS, Iyer LK, Topp EM. Mass spectrometric approaches to study protein structure and interactions in lyophilized powders. J Vis Exp 2015(98):52503–52503.

  16. Lueckel B, Helk B, Bodmer D, Leuenberger H. Effects of formulation and process variables on the aggregation of freeze-dried Interleukin-6 (IL-6) after Lyophilization and on storage. Pharm Dev Technol. 1998;3(3):337–46.

    Article  CAS  PubMed  Google Scholar 

  17. Tonnis WF, Mensink MA, de Jager A, van der Voort MK, Frijlink HW, Hinrichs WLJ. Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins. Mol Pharm. 2015;12(3):684–94.

    Article  CAS  PubMed  Google Scholar 

  18. Bhujbal SV, Zemlyanov DY, Cavallaro A, Mangal S, Taylor LS, Zhou QT. Qualitative and quantitative characterization of composition heterogeneity on the surface of spray dried amorphous solid dispersion particles by an advanced surface analysis platform with high surface sensitivity and superior spatial resolution. Mol Pharm. 2018;15(5):2045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adler M, Lee G. Stability and surface activity of lactate dehydrogenase in spray-dried trehalose. J Pharm Sci. 1999;88(2):199–208.

    Article  CAS  PubMed  Google Scholar 

  20. Lechuga-Ballesteros D, Charan C, Stults CLM, Stevenson CL, Miller DP, Vehring R, et al. Trileucine improves aerosol performance and stability of spray-dried powders for inhalation. J Pharm Sci. 2008;97(1):287–302.

    Article  CAS  PubMed  Google Scholar 

  21. Simperler A, Kornherr A, Chopra R, Bonnet PA, Jones W, Motherwell WDS, et al. Glass transition temperature of glucose, sucrose, and Trehalose: an experimental and in Silico study. J Phys Chem B. 2006;110(39):19678–84.

    Article  CAS  PubMed  Google Scholar 

  22. Larsen BS, Skytte J, Svagan AJ, Meng-Lund H, Grohganz H, Löbmann K. Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase. Pharm Dev Technol. 2019;24(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  23. Towns JK. Moisture content in proteins: its effects and measurement. J Chromatogr A. 1995;705(1):115–27.

    Article  CAS  PubMed  Google Scholar 

  24. Fu K, Griebenow K, Hsieh L, Klibanov AM, Robert L. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J Control Release. 1999;58(3):357–66.

    Article  CAS  PubMed  Google Scholar 

  25. Sinha S, Li Y, Williams TD, Topp EM. Protein conformation in amorphous solids by FTIR and by hydrogen/deuterium exchange with mass spectrometry. Biophys J. 2008;95(12):5951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barbosa LRS, Ortore MG, Spinozzi F, Mariani P, Bernstorff S, Itri R. The importance of protein-protein interactions on the pH-induced conformational changes of bovine serum albumin: a small-angle X-ray scattering study. Biophys J. 2010;98(1):147–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sophocleous AM, Zhang J, Topp EM. Localized hydration in lyophilized myoglobin by hydrogen-deuterium exchange mass spectrometry. 1. Exchange mapping. Mol Pharm. 2012;9(4):718–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heller MC, Carpenter JF, Randolph TW. Manipulation of Lyophilization-induced phase separation: implications for pharmaceutical proteins. Biotechnol Prog. 1997;13(5):590–6.

    Article  CAS  PubMed  Google Scholar 

  29. Maa Y-F, Costantino HR, Nguyen P-A, Hsu CC. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm Dev Technol. 1997;2(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  30. Mensink MA, Nethercott MJ, Hinrichs WLJ, van der Voort MK, Frijlink HW, Munson EJ, et al. Influence of miscibility of protein-sugar Lyophilizates on their storage stability. AAPS J. 2016;18(5):1225–32.

    Article  CAS  PubMed  Google Scholar 

  31. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This study was partially supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI132681 and R01AI146160. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elizabeth M. Topp or Qi Tony Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, N.E., Mutukuri, T.T., Zemlyanov, D.Y. et al. Surface Composition and Formulation Heterogeneity of Protein Solids Produced by Spray Drying. Pharm Res 37, 14 (2020). https://doi.org/10.1007/s11095-019-2738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2738-9

Key words

Navigation