Skip to main content
Log in

Formulation and Evaluation of Tamarind Seed Polysaccharide Gel for the Controlled Delivery of Aceclofenac

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The purpose of this study was to develop a transdermal gel with the addition of different polymer ratios that incorporates 1.0 %w/w aceclofenac to ensure maximum release. Aceclofenac is a new generation non-steroidal anti-inflammatory (NSAID) drug having anti-inflammatory and analgesic properties, and good tolerability in a variety of painful conditions. The transdermal route can also be used to supplement oral therapy for better management of pain and inflammation. Six aceclofenac gel formulations were prepared using 5.0, 6.0, and 7.0 %w/v of gelling agents which included carbopol and tamarind seed polysaccharide (F1–F3 and F4–F6, respectively) at 6.0 %w/v concentration. These formulations were evaluated for pH, drug content, spreadability, extrudability, physical nature and in-vitro drug release. The rank order for in-vitro release of aceclofenac was found to be F5 > F6 > F4 > F2 > F1 > F3. Thus, tamarind seed polysaccharide can be suggested as most suitable carrier for the gel formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. K. Thakur and M. K. Thakur, Handbook of Polymers for Pharmaceutical Technologies, John Wiley & Sons: New York (2015), Vol. 4, pp. 1 – 413.

    Google Scholar 

  2. J. H. Guo, G. W. Skinner, W. W. Harcum, et al., Pharm. Sci. Technol. Today, 1(6), 254 – 61 (1998).

    Article  CAS  Google Scholar 

  3. C. E. Beneke, A. M. Viljoen, and J. H. Hamman, Molecules, 14(7), 2602 – 2620 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Z. Zhang, O. Ortiz, R. Goyal, et al., Handbook of Polymer Applications in Medicine and Medical Devices, William Andrew: New York (2014), Ch.13, pp. 1 – 354.

  5. A. Aravamudhan, D. M. Ramos, A. A. Nada, et al., Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications, Elsevier: Connecticut (2014), Ch. 4, pp. 67 – 89.

    Google Scholar 

  6. H. Kaur, S. Yadav, M. Ahuja, et al., Carbohydr. Polym., 90(4), 1543 – 1549 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. N. Gaur and N. Parvez, World J. Pharm. Res., 8(7), 1219 – 1230 (2019).

    CAS  Google Scholar 

  8. K. Chawananorasest, P. Saengtongdee, and P. Kaemchantuek, Molecules, 21(6), 775 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. R. Singh, R. Malviya, and P. K. Sharma, Pharmacogn. J., 3(20), 17 – 19 (2011).

    Article  CAS  Google Scholar 

  10. N. M. Saidin, N. K. Anuar, and M. Redzuan, J. Appl. Pharm. Sci., 8(03), 141 – 57 (2018).

    CAS  Google Scholar 

  11. A. Singh, P. K. Sharma, V. K. Garg, et al., Int. J. Pharm Sci. Rev. Res., 4(2), 97 – 105 (2010).

    Google Scholar 

  12. N. A. Ibrahim, A. A. Nada, and B. M. Eid, Polysaccharide-Based Polymer Gels and Their Potential Applications, Springer: Singapore (2018), pp. 97 – 126.

    Google Scholar 

  13. R. N. Brogden and L. R. Wiseman, Drugs, 52(1), 113 – 124 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. R. Yamazaki, S. Tawai, T. Matsuzaki, et al., Eur. J. Pharmacol., 329(3), 181 – 187 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. G. Sharma, M. K. Saini, K. Thakur, et al., Nanomedicine, 12(6), 615 – 638 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. M. S. Alam, M. S. Algahtani, J. Ahmad, et al., Ther. Deliv., 11(12), 767 – 778 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. K. H. Maniar, I. A. Jones, R. Gopalakrishna, et al., Expert Opin. Pharmacother., 19(2), 93–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. S. Srivastava, A. K. Saksena, S. Khattri, et al. Inflammopharmacology, 24(6), 377 – 388 (2016).

    Article  PubMed  Google Scholar 

  19. R. Mohammadinejad , M. Ashrafizadeh, A. Pardakhty, et al., Curr. Rheumatol. Rep., 22(4), 1 – 7 (2020).

    Article  Google Scholar 

  20. J. Kongtharvonskul , T. Anothaisintawee, M. McEvoy, et al., Eur. J. Med. Res., 20(1), 1 – 10 (2015).

    Article  CAS  Google Scholar 

  21. D. Kornasoff, H. Frerick, J. Bowdler, et al., Clin. Rheumatol., 16(1), 32 – 8(1997).

    Article  CAS  PubMed  Google Scholar 

  22. J. Martel-Pelletier, J .M. Cloutier, J. P. Pelletier, Clin. Drug Invest., 14(3), 226 – 232(1997).

    Article  CAS  Google Scholar 

  23. J. S. Silva, D. Splendor, I. M. Gonçalves, et al., AAPS Pharm. Sci. Tech., 14(3), 1098 – 1000 (2013).

    Article  CAS  Google Scholar 

  24. R. B. Shah, M. A. Tawakkul, M. A. Khan, AAPS Pharm. Sci. Tech., 9(1), 250 – 258 (2008).

    CAS  Google Scholar 

  25. A. K. Nayak, D. Pal, and K. Santra, Int. J. Biol. Macromol., 82, 1023 – 1027(2016).

    Article  CAS  PubMed  Google Scholar 

  26. C. C. Mohan, K. Harini, B. V. Aafrin, et al., Carbohydr. Polym., 15(186), 394 – 401(2018).

    Article  Google Scholar 

  27. E. Antoniou, C. F. Buitrago, M. Tsianou, et al., Carbohydr. Polym., 79(2), 380 – 390 (2010).

    Article  CAS  Google Scholar 

  28. M. Nappinnai, S. Pakalapati, and R. Arimilli, Indian Drugs, 43, 513 – 515 (2006).

    Google Scholar 

  29. R. Aiyalu, A. Govindarjan, and A. Ramasamy, Braz. J. Pharm. Sci., 52(3),493 – 507(2016).

    Article  CAS  Google Scholar 

  30. U. D. Shivhare, K. B. Jain, V. B. Mathur, et al., Digest J. Nanomat. Biostruct., 4, 285 – 290 (2009).

    Google Scholar 

  31. W. F. Yen, M. Basri, M. Ahmad, et al., Sci. World J., 495271 (2015).

  32. M. S. Biozid, M. M. Rahman, M. N. Alam, et al., Int. J. Pharm. Pharm. Sci., 7(8), 49 – 52 (2015).

    CAS  Google Scholar 

  33. N. Padmini, S. D. Sundaramoorthy, H. Tripathi, et al., J. Appl. Pharm. Sci., 6(9), 102 – 108(2016).

    Article  CAS  Google Scholar 

  34. A. Bougandoura, B. D. Abrosca, S. Ameddah, et al., Fitoterapia, 1(109), 248 – 53 (2016).

    Article  Google Scholar 

  35. P. B. Patel and T. K. Patel, Eur. J. Rheumatol., 4(1), 11 – 18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayyar Parvez.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, N., Srivastava, S., George, M. et al. Formulation and Evaluation of Tamarind Seed Polysaccharide Gel for the Controlled Delivery of Aceclofenac. Pharm Chem J 56, 1483–1490 (2023). https://doi.org/10.1007/s11094-023-02818-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02818-z

Keywords

Navigation