Skip to main content
Log in

Application of Calibration-Free Boltzmann Plot Method for Composition and Pressure Measurement in Argon Free-Burning Arcs

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Arc plasmas have been extensively studied, experimentally and by means of modeling, due to their wide range of applications. In this article, a calibration-free Boltzmann plot method was applied to measure the species composition and pressure in the arc plasmas based on the assumption of local thermodynamic equilibrium and only single ionization of atoms. Experiments were performed on the argon free-burning arcs at two different pressures. Firstly, several Ar I and Ar II spectral lines were utilized to draw the Boltzmann plot. Then, the plasma temperatures were obtained by three different methods, the Boltzmann plot method, two-line Saha–Boltzmann plot method, and the Fowler–Milne method. The species concentration was calculated using the intercepts with ordinate in the Boltzmann plot. Combined with the electron number density determined from the Stark broadening of Ar I 696.54 nm, arc pressures are calculated based on the equation of state. The measured species concentration and pressures are in good agreement with the theoretical results, indicating that the used method is reliable for further arc plasma applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gonzalez JJ, Bouaziz M, Razafinimanana M, Gleizes A (1997) The influence of iron vapour on an argon transferred arc. Plasma Sources Sci Technol 6:20

    Article  CAS  Google Scholar 

  2. Tsujimura Y, Tanaka M (2012) Analysis of behavior of arc plasma conditions in MIG welding with metal transfer. Q J Jpn Weld Soc 30:288–297. https://doi.org/10.2207/qjjws.30.288

    Article  CAS  Google Scholar 

  3. Shigeta M, Nakanishi S, Tanaka M, Murphy AB (2017) Analysis of dynamic plasma behaviours in gas metal arc welding by imaging spectroscopy. Weld Int 7116:1–12. https://doi.org/10.1080/09507116.2016.1223220

    Article  Google Scholar 

  4. Murphy AB (1994) Modified Fowler–Milne method for the spectroscopic measurement of temperature and composition of multielement thermal plasmas. Rev Sci Instrum 65:3423–3427. https://doi.org/10.1063/1.1144516

    Article  CAS  Google Scholar 

  5. Valensi F, Pellerin S, Boutaghane A et al (2010) Plasma diagnostics in gas metal arc welding by optical emission spectroscopy. J Phys D Appl Phys 43:434002

    Article  Google Scholar 

  6. Eichhoff D, Kurz A, Kozakov R et al (2012) Study of an ablation-dominated arc in a model circuit breaker. J Phys D Appl Phys 45:305204

    Article  Google Scholar 

  7. Pellerin S, Musiol K, Pokrzywka B, Chapelle J (1994) Investigation of a cathode region of an electric arc. J Phys D Appl Phys 27:522–528. https://doi.org/10.1088/0022-3727/27/3/014

    Article  CAS  Google Scholar 

  8. Ciucci A, Corsi M, Palleschi V et al (1999) New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl Spectrosc 53:960–964

    Article  CAS  Google Scholar 

  9. Hahn DW, Omenetto N (2012) Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc 66:347–419

    Article  CAS  Google Scholar 

  10. Grifoni E, Legnaioli S, Lorenzetti G et al (2016) From calibration-free to fundamental parameters analysis: a comparison of three recently proposed approaches. Spectrochim Acta Part B At Spectrosc 124:40–46. https://doi.org/10.1016/j.sab.2016.08.022

    Article  CAS  Google Scholar 

  11. Abbass Q, Ahmed N, Ahmed R, Baig MA (2016) A comparative study of calibration free methods for the elemental analysis by laser induced breakdown spectroscopy. Plasma Chem Plasma Process 36:1287–1299

    Article  CAS  Google Scholar 

  12. Ratovoson P, Valensi F, Razafinimanana M, Tmenova T (2014) Spectroscopic study and high speed imaging of a transient arc. J Phys Conf Ser 550:12012

    Article  Google Scholar 

  13. Mauer G, Vaßen R (2012) Plasma spray-PVD: plasma characteristics and impact on coating properties. J Phys Conf Ser 406:12005

    Article  Google Scholar 

  14. Kunze H-J (2009) Introduction to plasma spectroscopy. Springer, Berlin

    Book  Google Scholar 

  15. Demtröder W (2013) Laser spectroscopy: basic concepts and instrumentation. Springer, Berlin

    Google Scholar 

  16. Murphy AB, Hiraoka K (2000) A comparison of measurements and calculations of demixing in free-burning arcs. J Phys D Appl Phys 33:2183

    Article  CAS  Google Scholar 

  17. De Giacomo A, Dell’Aglio M, De Pascale O et al (2007) ns- and fs-LIBS of copper-based-alloys: a different approach. Appl Surf Sci 253:7677–7681. https://doi.org/10.1016/j.apsusc.2007.02.037

    Article  CAS  Google Scholar 

  18. Zalach J, Franke S (2013) Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp. J Appl Phys 113:043303. https://doi.org/10.1063/1.4788701

    Article  CAS  Google Scholar 

  19. Ciucci A, Palleschi V, Rastelli S et al (1999) CF-LIPS: a new approach to LIPS spectra analysis. Laser Part Beams 17:793–797. https://doi.org/10.1017/S0263034699174251

    Article  CAS  Google Scholar 

  20. Maali JJ, Shabanov SV (2019) Error analysis in optimization problems relevant for calibration-free laser-induced breakdown spectroscopy. J Quant Spectrosc Radiat Transf 222–223:236–246. https://doi.org/10.1016/j.jqsrt.2018.10.029

    Article  CAS  Google Scholar 

  21. Kühn-Kauffeldt M, Marques J-L, Forster G, Schein J (2013) Electron temperature and density measurement of tungsten inert gas arcs with Ar–He shielding gas mixture. J Instrum 8:C10017

    Article  Google Scholar 

  22. Zhang H, Wu Y, Sun H et al (2019) Investigations of laser-induced plasma in air by Thomson and Rayleigh scattering. Spectrochim Acta Part B At Spectrosc 157:6–11. https://doi.org/10.1016/j.sab.2019.05.008

    Article  CAS  Google Scholar 

  23. Pretzier G (1991) A new method for numerical Abel-inversion. Zeitschrift für Naturforsch A 46:639–641

    Article  Google Scholar 

  24. Pretzier G, Jäger H, Neger T et al (1992) Comparison of different methods of Abel inversion using computer simulated and experimental side-on data. Zeitschrift für Naturforsch A 47:955–970

    Article  Google Scholar 

  25. Kramida A, Ralchenko Y, Reader J (2018) NIST atomic spectra database (ver. 5.6.1). In: Natl. Inst. Stand. Technol. Gaithersburg, MD. https://physics.nist.gov/asd

  26. Xiao X, Hua X, Wu Y (2015) Comparison of temperature and composition measurement by spectroscopic methods for argon–helium arc plasma. Opt Laser Technol 66:138–145. https://doi.org/10.1016/j.optlastec.2014.08.017

    Article  CAS  Google Scholar 

  27. Griem HR (2005) Principles of plasma spectroscopy. Cambridge University Press, Cambridge

    Google Scholar 

  28. Yalçin Ş, Crosley DR, Smith GP, Faris GW (1999) Influence of ambient conditions on the laser air spark. Appl Phys B Lasers Opt 68:121–130

    Article  Google Scholar 

  29. Aguilera JA, Aragón C (2004) Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements. Spectrochim Acta Part B At Spectrosc 59:1861–1876. https://doi.org/10.1016/j.sab.2004.08.003

    Article  CAS  Google Scholar 

  30. Farmer AJD, Haddad GN (1984) Local thermodynamic equilibrium in free-burning arcs in argon. Appl Phys Lett 45:24–25

    Article  CAS  Google Scholar 

  31. Dzierzega K, Bratasz Ł, Pellerin S et al (2003) Stark width and shift measurements for the 696.543 nm ArI line using degenerate four-wave mixing (DFWM) spectroscopy. Phys Scr 67:52–58. https://doi.org/10.1238/Physica.Regular.067a00052

    Article  CAS  Google Scholar 

  32. Lesage A (2009) Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms A critical review of selected data for the period 2001–2007. New Astron Rev 52:471–535. https://doi.org/10.1016/j.newar.2008.01.001

    Article  CAS  Google Scholar 

  33. Pellerin S, Musiol K, Pokrzywka B, Chapelle J (1996) Stark width of-Ar I transition (696.543 nm). J Phys B At Mol Opt Phys 29:3911–3924. https://doi.org/10.1088/0953-4075/29/17/014

    Article  CAS  Google Scholar 

  34. Zielińska S, Musioł K, Dzierżęga K et al (2007) Investigations of GMAW plasma by optical emission spectroscopy. Plasma Sources Sci Technol 16:832

    Article  Google Scholar 

  35. Bachmann B, Kozakov R, Gött G et al (2013) High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs. J Phys D Appl Phys 46:125203

    Article  Google Scholar 

  36. Rouffet ME, Wendt M, Goett G et al (2010) Spectroscopic investigation of the high-current phase of a pulsed GMAW process. J Phys D Appl Phys 43:434003

    Article  Google Scholar 

  37. Wertheim GK, Butler MA, West KW, Buchanan DNE (1974) Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev Sci Instrum 45:1369–1371

    Article  Google Scholar 

  38. Olivero JJ, Longbothum RL (1977) Empirical fits to the Voigt line width: a brief review. J Quant Spectrosc Radiat Transf 17:233–236

    Article  Google Scholar 

  39. Konjević N, Ivković M, Sakan N (2012) Hydrogen Balmer lines for low electron number density plasma diagnostics. Spectrochim Acta Part B At Spectrosc 76:16–26. https://doi.org/10.1016/j.sab.2012.06.026

    Article  CAS  Google Scholar 

  40. Vitel Y, Skowronek M (1987) Noble gas line profiles in dense plasmas I. Argon. J Phys B 20:6477–6491. https://doi.org/10.1088/0022-3700/20/24/003

    Article  CAS  Google Scholar 

  41. Valognes JC, Bardet JP, Flih SA, Vitel Y (2004) New contribution to study on Stark broadenings of 6965 Å of Ar(I) spectral lineshapes in dense cold plasmas including levels of like and unlike parentage interactions. J Quant Spectrosc Radiat Transf 87:221–241. https://doi.org/10.1016/j.jqsrt.2003.12.015

    Article  CAS  Google Scholar 

  42. Trelles JP (2013) Formation of self-organized anode patterns in arc discharge simulations. Plasma Sources Sci Technol 22:25017

    Article  Google Scholar 

  43. Yin X, Gou J, Zhang J, Sun J (2012) Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields. J Phys D Appl Phys 45:285203

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research Program of China (973 Program) 2015CB251001, 2015CB251002, National Natural Science Foundation of China under Grant 51521065, 51577145, 51707144 and State Key Laboratory of Electrical Insulation and Power Equipment (EIPE17305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wu or Fei Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wu, Y., Sun, H. et al. Application of Calibration-Free Boltzmann Plot Method for Composition and Pressure Measurement in Argon Free-Burning Arcs. Plasma Chem Plasma Process 39, 1429–1447 (2019). https://doi.org/10.1007/s11090-019-10018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10018-5

Keywords

Navigation