Skip to main content

Advertisement

Log in

Synthesis mechanism, enhanced visible-light-photocatalytic properties, and photogenerated hydroxyl radicals of PS@CdS core–shell nanohybrids

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, spherical polystyrene (PS)@CdS core–shell structure nanoparticles (CSNPs) were prepared by sonochemical method. The influences of the surfactant PVP, the order of adding precursors, the molar ratio of S/Cd, and the reaction time on structure were carefully studied. Results of SEM, TEM, EDS, XRD, and FT-IR showed that the as-prepared nanohybrids have a typical core–shell structure with 260 nm core and a uniform shell with thickness ranging from 10 to 30 nm, both PVP and the order of adding precursors were the controlling parameters. In addition, the as-synthesized PS@CdS CSNPs exhibited much higher photocatalytic activity for RhB under visible light irradiation compared with pure CdS, which should be attributed to their synergic effect between core and shell, amount of hydroxyl groups on the surface, good monodispersity, and so on. Besides, the production of photogenerated hydroxyl radical (OH) was in accordance with the RhB decolorization efficiency from the prepared PS@CdS CSNPs. It indicated that OH was the main active oxygen species in the photocatalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2

Similar content being viewed by others

References

  • Anandan S, Grieser F, Ashokkumar M (2008) Sonochemical synthesis of Au–Ag core–shell bimetallic nanoparticles. J Phys Chem C 112(39):15102–15105. doi:10.1021/jp806960r

    Article  Google Scholar 

  • Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22(10):1039–1059. doi:10.1002/adma.200904093

    Article  Google Scholar 

  • Breen ML, Dinsmore AD, Pink RH, Qadri SB, Ratna BR (2001) Sonochemically produced ZnS-coated polystyrene core–shell particles for use in photonic crystals. Langmuir 17(3):903–907. doi:10.1021/la0011578

    Article  Google Scholar 

  • Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13(1):11–22. doi:10.1002/1521-4095(200101)13:1<11:AID-ADMA11>3.0.CO;2-N

    Article  Google Scholar 

  • Chen Y, Yang S, Wang K, Lou L (2005) Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of acid orange 7. J Photochem Photobiol A 172(1):47–54. doi:10.1016/j.jphotochem.2004.11.006

    Article  Google Scholar 

  • Coşkun M, Korkmaz M (2014) The effect of SiO2 shell thickness on the magnetic properties of ZnFe2O4 nanoparticles. J Nanopart Res 16(3):1–12. doi:10.1007/s11051-014-2316-3

    Google Scholar 

  • Douvalis A, Zboril R, Bourlinos A, Tucek J, Spyridi S, Bakas T (2012) A facile synthetic route toward air-stable magnetic nanoalloys with Fe–Ni/Fe–Co core and iron oxide shell. J Nanopart Res 14(9):1–16. doi:10.1007/s11051-012-1130-z

    Google Scholar 

  • Fang FF, Kim JH, Choi HJ (2009) Synthesis of core–shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer 50(10):2290–2293. doi:10.1016/j.polymer.2009.03.023

    Article  Google Scholar 

  • Gao T, Li Q, Wang T (2005) Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites. Chem Mater 17(4):887–892. doi:10.1021/cm0485456

    Article  Google Scholar 

  • Geng J, Jia X-D, Zhu J-J (2011) Sonochemical selective synthesis of ZnO/CdS core/shell nanostructures and their optical properties. CrystEngComm 13(1):193–198. doi:10.1039/C0CE00180E

    Article  Google Scholar 

  • Ghosh Chaudhuri R, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433. doi:10.1021/cr100449n

    Article  Google Scholar 

  • Graf C, Dembski S, Hofmann A, Rühl E (2006) A general method for the controlled embedding of nanoparticles in silica colloids. Langmuir 22(13):5604–5610. doi:10.1021/la060136w

    Article  Google Scholar 

  • Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK (2005) Role of molecular interaction in stability of celecoxib–PVP amorphous systems. Mol Pharm 2(5):384–391. doi:10.1021/mp050004g

    Article  Google Scholar 

  • Horikoshi S, Saitou A, Hidaka H, Serpone N (2003) Environmental remediation by an integrated microwave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/Vis radiation. Environ Sci Technol 37(24):5813–5822. doi:10.1021/es030326i

    Article  Google Scholar 

  • Hu X, Mohamood T, Ma W, Chen C, Zhao J (2006) Oxidative decomposition of rhodamine B dye in the presence of VO2 + and/or Pt(IV) under visible light irradiation: N-deethylation, chromophore cleavage, and mineralization. J Phys Chem B 110(51):26012–26018. doi:10.1021/jp063588q

    Article  Google Scholar 

  • Hu Y, Liu Y, Qian H, Li Z, Chen J (2010) Coating colloidal carbon spheres with CdS nanoparticles: microwave-assisted synthesis and enhanced photocatalytic activity. Langmuir 26(23):18570–18575. doi:10.1021/la103191y

    Article  Google Scholar 

  • Huang KJ, Rajendran P, Liddell CM (2007) Chemical bath deposition synthesis of sub-micron ZnS-coated polystyrene. J Colloid Interface Sci 308(1):112–120. doi:10.1016/j.jcis.2006.11.057

    Article  Google Scholar 

  • Imhof A (2001) Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir 17(12):3579–3585. doi:10.1021/la001604j

    Article  Google Scholar 

  • Ishibashi K-i, Fujishima A, Watanabe T, Hashimoto K (2000a) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2(3):207–210. doi:10.1016/S1388-2481(00)00006-0

    Article  Google Scholar 

  • Ishibashi K-i, Fujishima A, Watanabe T, Hashimoto K (2000b) Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobiol A 134(1–2):139–142. doi:10.1016/S1010-6030(00)00264-1

    Article  Google Scholar 

  • Kandula S, Jeevanandam P (2014) Visible-light-induced photodegradation of methylene blue using ZnO/CdS heteronanostructures synthesized through a novel thermal decomposition approach. J Nanopart Res 16(6):1–18. doi:10.1007/s11051-014-2452-9

    Google Scholar 

  • Karabacak RB, Erdem M, Yurdakal S, Çimen Y, Türk H (2014) Facile two-step preparation of polystyrene/anatase TiO2 core/shell colloidal particles and their potential use as an oxidation photocatalyst. Mater Chem Phys 144(3):498–504. doi:10.1016/j.matchemphys.2014.01.026

    Article  Google Scholar 

  • Kim TH, Lee KH, Kwon YK (2006) Monodisperse hollow titania nanospheres prepared using a cationic colloidal template. J Colloid Interface Sci 304(2):370–377. doi:10.1016/j.jcis.2006.08.059

    Article  Google Scholar 

  • Li S, Zheng J, Yang W, Zhao Y (2007) A new synthesis process and characterization of three-dimensionally ordered macroporous ZrO2. Mater Lett 61(26):4784–4786. doi:10.1016/j.matlet.2007.03.033

    Article  Google Scholar 

  • Louit G, Foley S, Cabillic J, Coffigny H, Taran F, Valleix A, Renault JP, Pin S (2005) The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography. Radiat Phys Chem 72(2–3):119–124. doi:10.1016/j.radphyschem.2004.09.007

    Article  Google Scholar 

  • Ma Y, Qi L, Ma J, Cheng H, Shen W (2003) Synthesis of submicrometer-sized CdS hollow spheres in aqueous solutions of a triblock copolymer. Langmuir 19(21):9079–9085. doi:10.1021/la034994t

    Article  Google Scholar 

  • Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y (2000) Characterization and catalytic activity of core–shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 104(25):6028–6032. doi:10.1021/jp994255e

    Article  Google Scholar 

  • Monteiro OC, Esteves ACC, Trindade T (2002) The synthesis of SiO2@CdS nanocomposites using single-molecule precursors. Chem Mater 14(7):2900–2904. doi:10.1021/cm011257e

    Article  Google Scholar 

  • Morel A-L, Nikitenko SI, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M (2008) Sonochemical approach to the synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable properties. ACS Nano 2(5):847–856. doi:10.1021/nn800091q

    Article  Google Scholar 

  • Mu W, Fu M (2012) Synthesis of non-rigid core–shell structured PS/SiO2 composite abrasives and their oxide CMP performance. Microelectron Eng 96:51–55. doi:10.1016/j.mee.2012.02.047

    Article  Google Scholar 

  • Murcia MJ, Shaw DL, Woodruff H, Naumann CA, Young BA, Long EC (2006) Facile sonochemical synthesis of highly luminescent ZnS–shelled CdSe quantum dots. Chem Mater 18(9):2219–2225. doi:10.1021/cm0505547

    Article  Google Scholar 

  • Radmilovic V, Ophus C, Marquis EA, Rossell MD, Tolley A, Gautam A, Asta M, Dahmen U (2011) Highly monodisperse core–shell particles created by solid-state reactions. Nat Mater 10(9):710–715. doi:10.1038/nmat3077

    Article  Google Scholar 

  • Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151(1–3):10–18. doi:10.1016/j.cej.2009.02.026

    Article  Google Scholar 

  • Rogach A, Susha A, Caruso F, Sukhorukov G, Kornowski A, Kershaw S, Möhwald H, Eychmüller A, Weller H (2000) Nano- and microengineering: 3-D colloidal photonic crystals prepared from sub-μm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells. Adv Mater 12(5):333–337. doi:10.1002/(SICI)1521-4095(200003)12:5<333:AID-ADMA333>3.0.CO;2-X

    Article  Google Scholar 

  • Saif M, Aboul-Fotouh SMK, El-Molla SA, Ibrahim MM, Ismail LFM (2012) Improvement of the structural, morphology, and optical properties of TiO2 for solar treatment of industrial wastewater. J Nanopart Res 14(11):1–11. doi:10.1007/s11051-012-1227-4

    Google Scholar 

  • Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15(35–36):3559–3592. doi:10.1039/B509097K

    Article  Google Scholar 

  • Shenoy DB, Antipov AA, Sukhorukov GB, Möhwald H (2003) Layer-by-layer engineering of biocompatible, decomposable core–shell structures. Biomacromolecules 4(2):265–272. doi:10.1021/bm025661y

    Article  Google Scholar 

  • Sherman RL, Ford WT (2005) Semiconductor nanoparticle/polystyrene latex composite materials. Langmuir 21(11):5218–5222. doi:10.1021/la0468139

    Article  Google Scholar 

  • Shi F, Li Y, Wang H, Zhang Q (2012) Formation of core/shell structured polystyrene/anatase TiO2 photocatalyst via vapor phase hydrolysis. Appl Catal B 123–124:127–133. doi:10.1016/j.apcatb.2012.04.032

    Article  Google Scholar 

  • Siva C, Ramya R, Baraneedharan P, Nehru K, Sivakumar M (2014) Fabrication, physiochemical and optoelectronic characterization of SiO2/CdS core–shell nanostructures. J Mater Sci 25(3):1202–1208. doi:10.1007/s10854-014-1710-z

    Google Scholar 

  • Sun H, He J, Wang J, Zhang S-Y, Liu C, Sritharan T, Mhaisalkar S, Han M-Y, Wang D, Chen H (2013) Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. JACS 135(24):9099–9110. doi:10.1021/ja4035335

    Article  Google Scholar 

  • Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122(1):178–192. doi:10.1016/0021-9517(90)90269-P

    Article  Google Scholar 

  • Virtudazo RR, Watanabe H, Shirai T, Fuji M (2013) Simple preparation and initial characterization of semi-amorphous hollow calcium silicate hydrate nanoparticles by ammonia-hydrothermal-template techniques. J Nanopart Res 15(5):1–9. doi:10.1007/s11051-013-1604-7

    Google Scholar 

  • Wang Y, Wang G, Wang H, Tang C, Jiang Z, Zhang L (2007) Microwave-assisted fabrication of PS@CdS core-shell nanostructures and CdS hollow spheres. Chem Lett 36(5):674–675. doi:10.1246/cl.2007.674

    Article  Google Scholar 

  • Wang Z, Gao Y, Wang J-Y, Zhang J-H, Yang B (2008) Fabrication of CdS-nanoparticle/polystyrene latex through the combined use of surface-initiated ATRP and gas/solid reaction. Chem J Chin Univ 7: 1452–1455. http://www.cqvip.com/qk/90335x/200807/27899069.html

  • Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102(30):5845–5851. doi:10.1021/jp980922c

    Article  Google Scholar 

  • Wu D, Ge X, Zhang Z, Wang M, Zhang S (2004) Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres. Langmuir 20(13):5192–5195. doi:10.1021/la049405d

    Article  Google Scholar 

  • Xing L, Xie Y, Cao H, Minakata D, Zhang Y, Crittenden JC (2014) Activated carbon-enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: effects of the type and number of basic sites. Chem Eng J 245:71–79. doi:10.1016/j.cej.2014.01.104

    Article  Google Scholar 

  • Yin J, Qian X, Yin J, Shi M, Zhou G (2003) Preparation of ZnS/PS microspheres and ZnS hollow shells. Mater Lett 57(24–25):3859–3863. doi:10.1016/S0167-577X(03)00217-9

    Article  Google Scholar 

  • Zabek P, Eberl J, Kisch H (2009) On the origin of visible light activity in carbon-modified titania. Photochem Photobiol Sci 8(2):264–269. doi:10.1039/B812798K

    Article  Google Scholar 

  • Zhang S, Zhu Y, Yang X, Li C (2005) Fabrication of core–shell latex spheres with CdS/polyelectrolyte composite multilayers. Colloids Surf A 264(1–3):215–218. doi:10.1016/j.colsurfa.2005.03.024

    Article  Google Scholar 

  • Zhang J, Tang Y, Lee K, Ouyang M (2010) Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327(5973):1634–1638. doi:10.1126/science.1184769

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant No. 21176260 and 21376268), Taishan Scholar Foundation (No. ts20130929) and the National Basic Research Program of China (No. 2011CB605703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xu, Q., Zheng, X. et al. Synthesis mechanism, enhanced visible-light-photocatalytic properties, and photogenerated hydroxyl radicals of PS@CdS core–shell nanohybrids. J Nanopart Res 16, 2794 (2014). https://doi.org/10.1007/s11051-014-2794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2794-3

Keywords

Navigation