Skip to main content
Log in

On the origin of visible light activity in carbon-modified titania

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Characterization of a commercial carbon-modified titania visible light photocatalyst (VLP) reveals a quasi-Fermi level of −0.50 V at pH 7 and characteristic C1s binding energies of 284.8 eV and 286.3 eV as measured by XPS. Treatment with sodium hydroxide affords a soluble brown extract SENSex exhibiting in the IR spectrum intense peaks at 1420 cm−1 and 1580 cm−1, tentatively assigned to an arylcarboxylate group. Both the residue and the solution SENSex do not induce significant visible light mineralization of 4-chlorophenol. However, after heating them together in suspension, followed by calcination at 200 °C the resulting powder VLPreas exhibits the same quasi-Fermi level and C1s binding energies as the original VLP. Furthermore, within experimental error its visible light activity is identical with that of VLP. These results clearly indicate that, at least for VLP but probably also for other “carbon-doped” titania materials, an aromatic carbon compound and not substitutional or interstitial carbon is the origin of visible light activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, T. N. Rao and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C, 2000, 1, 1–21.

    Article  CAS  Google Scholar 

  2. D. A. Tryk, A. Fujishima and K. Honda, Recent topics in photoelectrochemistry: achievements and future prospects, Electrochim. Acta, 2000, 45, 2363–2376.

    Article  CAS  Google Scholar 

  3. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev., 1995, 95, 69–96.

    Article  CAS  Google Scholar 

  4. O. Carp, C. L. Huisman and A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 2004, 32, 33–177.

    Article  CAS  Google Scholar 

  5. A. L. Linsebigler, G. Lu, J. T. Yates, Jr., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 1995, 95, 735–758.

    Article  CAS  Google Scholar 

  6. T. L. Thompson, J. T. Yates, Jr., TiO2-based photocatalysis: Surface defects, oxygen and charge transfer, Top. Catal., 2005, 35, 197–210.

    Article  CAS  Google Scholar 

  7. S. Sakthivel and H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem., Int. Ed., 2003, 42, 4908–4911.

    Article  CAS  Google Scholar 

  8. E. A. Konstantinova, A. I. Kokorin, S. Sakthivel, H. Kisch and K. Lips, Carbon-doped titanium dioxide: visible light photocatalysis and EPR investigation, Chimia, 2007, 61, 810–814.

    Article  CAS  Google Scholar 

  9. J. Orth-Gerber and H. Kisch, Titanium dioxide photocatalyst containing carbon and method for its production, (Kronos International Inc., Germany), U.S. Pat. Appl. Publ. US 2005226761, 2005, 19 pp..

    Google Scholar 

  10. S. Yin, M. Komatsu, Q. Zhang, F. Saito and T. Sato, Synthesis of visible-light responsive nitrogen/carbon doped titania photocatalyst by mechanochemical doping, J. Mater. Sci., 2007, 42, 2399–2404.

    Article  CAS  Google Scholar 

  11. C. Xu, R. Killmeyer, M. L. Gray and S. U. M. Khan, Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination, Appl. Catal. B, 2006, 64, 312–317.

    Article  CAS  Google Scholar 

  12. W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan and Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2, Appl. Catal. B, 2007, 69, 138–144.

    Article  CAS  Google Scholar 

  13. L. Lin, W. Lin, Y. X. Zhu, B. Y. Zhao, Y. C. Xie, Y. He and Y. F. Zhu, Uniform carbon-covered titania and its photocatalytic property, J. Mol. Catal. A: Chem., 2005, 236, 46–53.

    Article  CAS  Google Scholar 

  14. S. Y. Treschev, P. -W. Chou, Y. -H. Tseng, J. -B. Wang, E. V. Perevedentseva, C. -L. Cheng, Photoactivities of the visible-light-activated mixed-phase carbon-containing titanium dioxide: The effect of carbon incorporation, Appl. Catal. B, 2008, 79, 8–16.

    Article  CAS  Google Scholar 

  15. Y. Li, D. -S. Hwang, N. H. Lee, S. -J. Kim, Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst, Chem. Phys. Lett., 2005, 404, 25–29.

    Article  CAS  Google Scholar 

  16. C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk and W. F. Maier, Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst, Appl. Catal. B, 2001, 32, 215–227.

    Article  CAS  Google Scholar 

  17. G. Yu, Z. Chen, Z. Zhang, P. Zhang and Z. Jiang, The photocatalytic activity and stability of a nanosized TiO2 film prepared by carbon black modified method, Catal. Today, 2004, 90, 305–312.

    Article  CAS  Google Scholar 

  18. Y. -H. Tseng, C. -S. Kuo, C. -H. Huang, Y. -Y. Li, P. -W. Chou, C. -L. Cheng, M. -S. Wong, Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity, Nanotechnology, 2006, 17, 2490–2497.

    Article  CAS  Google Scholar 

  19. H. Irie, Y. Watanabe and K. Hashimoto, Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst, Chem. Lett., 2003, 32, 772–773.

    Article  CAS  Google Scholar 

  20. Y. Cheng, H. Sun, W. Jin and N. Xu, Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation, Chem. Eng. J. (Amsterdam, Neth.), 2007, 128, 127–133.

    CAS  Google Scholar 

  21. H. Liu, A. Imanishi and Y. Nakato, Mechanisms for Photooxidation Reactions of Water and Organic Compounds on Carbon-Doped Titanium Dioxide, as Studied by Photocurrent Measurements, J. Phys. Chem. C, 2007, 111, 8603–8610.

    Article  CAS  Google Scholar 

  22. K. Nagaveni, G. Sivalingam, M. S. Hegde and G. Madras, Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2, Appl. Catal. B, 2004, 48, 83–93.

    Article  CAS  Google Scholar 

  23. C. -S. Kuo, Y. -H. Tseng, C. -H. Huang, Y. -Y. Li, Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity, J. Mol. Catal. A: Chem., 2007, 270, 93–100.

    Article  CAS  Google Scholar 

  24. H. Irie, S. Washizuka and K. Hashimoto, Hydrophilicity on carbon-doped TiO2 thin films under visible light, Thin Solid Films, 2006, 510, 21–25.

    Article  CAS  Google Scholar 

  25. Y. Choi, T. Umebayashi and M. Yoshikawa, Fabrication and characterization of C-doped anatase TiO2 photocatalysts, J. Mater. Sci., 2004, 39, 1837–1839.

    Article  CAS  Google Scholar 

  26. J. Riga, J. J. Pireaux, R. Caudano and J. J. Verbist, A comparative ESCA study of the electronic structure of solid acenes: benzene, naphthalene, anthracene, and tetracene, Phys. Scr., 1977, 16, 346–350.

    Article  CAS  Google Scholar 

  27. R. Larsson and B. Folkesson, An infrared spectroscopic approach to the question on bonding in triphenylphosphine metal complexes and the use of triphenylphosphine as an internal standard for ESCA studies, Chemica Scripta, 1976, 9, 148–150.

    CAS  Google Scholar 

  28. J. Schnadt, J. N. O’Shea, L. Patthey, J. Schiessling, J. Krempasky, M. Shi, N. Martensson and P. A. Bruhwiler, Structural study of adsorption of isonicotinic acid and related molecules on rutile TiO2(1 1 0) II: XPS, Surf. Sci., 2003, 544, 74–86.

    Article  CAS  Google Scholar 

  29. D. Chen, Z. Jiang, J. Geng, Q. Wang and D. Yang, Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity, Ind. Eng. Chem. Res., 2007, 46, 2741–2746.

    Article  CAS  Google Scholar 

  30. X. Yang, C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal and K. Klabunde, Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde, J. Catal., 2007, 252, 296–302.

    Article  CAS  Google Scholar 

  31. S. Sakthivel, M. Janczarek and H. Kisch, Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2, J. Phys. Chem. B, 2004, 108, 19384–19387.

    Article  CAS  Google Scholar 

  32. X. Zhang, M. Zhou and L. Lei, TiO2 photocatalyst deposition by MOCVD on activated carbon, Carbon, 2005, 44, 325–333.

    Article  Google Scholar 

  33. C. Di Valentin, G. Pacchioni and A. Selloni, Theory of Carbon Doping of Titanium Dioxide, Chem. Mater., 2005, 17, 6656–6665.

    Article  Google Scholar 

  34. N. Serpone, Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?, J. Phys. Chem. B, 2006, 110, 24287–24293.

    Article  CAS  Google Scholar 

  35. V. N. Kuznetsov and N. Serpone, Visible Light Absorption by Various Titanium Dioxide Specimens, J. Phys. Chem. B, 2006, 110, 25203–25209.

    Article  CAS  Google Scholar 

  36. A. M. Roy, G. C. De, N. Sasmal and S. S. Bhattacharyya, Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement, Int. J. Hydrogen Energy, 1995, 20, 627–630.

    Article  CAS  Google Scholar 

  37. J. Theurich, M. Lindner and D. W. Bahnemann, Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study, Langmuir, 1996, 12, 6368–6376.

    Article  CAS  Google Scholar 

  38. J. Tauc, R. Grigorovici and A. Vancu, Optical properties and electronic structure of amorphous germanium, J. Phys. Soc. Jpn., Suppl., 1966, 21, 123–126.

    CAS  Google Scholar 

  39. B. Karvaly and I. Hevesi, Diffuse reflectance spectra of vanadium pentoxide powder, Z. Naturforsch., A: Astrophys., Phys. Phys. Chem., 1971, 26, 245–249.

    Article  CAS  Google Scholar 

  40. R. Rahal, S. Daniele, L. G. Hubert-Pfalzgraf, V. Guyot-Ferreol, J. -F. Tranchant, Synthesis of para-amino benzoic acid-TiO2 hybrid nanostructures of controlled functionality by an aqueous one-step process, Eur. J. Inorg. Chem., 2008, 980–987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Kisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ząbek, P., Eberl, J. & Kisch, H. On the origin of visible light activity in carbon-modified titania. Photochem Photobiol Sci 8, 264–269 (2009). https://doi.org/10.1039/b812798k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b812798k

Navigation