Skip to main content

Advertisement

Log in

Emerging role of MicroRNA-Based theranostics in Hepatocellular Carcinoma

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC), with its high mortality and short survival rate, continues to be one of the deadliest malignancies despite relentless efforts and several technological advances. The poor prognosis of HCC and the few available treatments are to blame for the low survival rate, which emphasizes the importance of creating new, effective diagnostic markers and innovative therapy strategies. In-depth research is being done on the potent biomarker miRNAs, a special class of non-coding RNA and has shown encouraging results in the early identification and treatment of HCC in order to find more viable and successful therapeutics for the disease. It is beyond dispute that miRNAs control cell differentiation, proliferation, and survival and, depending on the genes they target, can either promote tumorigenesis or suppress it. Given the vital role miRNAs play in the biological system and their potential to serve as ground-breaking treatments for HCC, more study is required to fully examine their theranostic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors declare that [the/all other] data supporting the findings of this study are available within the article.

References

  1. Chakraborty E, Sarkar D (2022) Emerging therapies for Hepatocellular Carcinoma (HCC). Cancers (Basel) 14:2798. https://doi.org/10.3390/cancers14112798

    Article  CAS  PubMed  Google Scholar 

  2. Huang A, Yang X-R, Chung W-Y et al (2020) Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther 5:146. https://doi.org/10.1038/s41392-020-00264-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Morishita A, Oura K, Tadokoro T et al (2021) MicroRNAs in the pathogenesis of Hepatocellular Carcinoma: a review. Cancers (Basel) 13:514. https://doi.org/10.3390/cancers13030514

    Article  CAS  Google Scholar 

  4. Koustas E, Trifylli E-M, Sarantis P et al (2023) An insight into the arising role of MicroRNAs in Hepatocellular Carcinoma: future diagnostic and therapeutic approaches. IJMS 24:7168. https://doi.org/10.3390/ijms24087168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song SK, Jung WY, Park S-K et al (2019) Significantly different expression levels of microRNAs associated with vascular invasion in hepatocellular carcinoma and their prognostic significance after surgical resection. PLoS ONE 14:e0216847. https://doi.org/10.1371/journal.pone.0216847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vychytilova-Faltejskova P, Slaby O (2019) MicroRNA-215: from biology to theranostic applications. Mol Aspects Med 70:72–89. https://doi.org/10.1016/j.mam.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  7. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529. https://doi.org/10.1073/pnas.242606799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanahan D, Weinberg RA (2011) Hallmarks of Cancer: the Next Generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  9. Ashmawy AM, Elgeshy KM, Abdel Salam E-ST et al (2017) Crosstalk between liver-related microRNAs and Wnt/β-catenin pathway in hepatocellular carcinoma patients. Arab J Gastroenterol 18:144–150. https://doi.org/10.1016/j.ajg.2017.09.001

    Article  PubMed  Google Scholar 

  10. Wu Z-Q, Zhu Y-X, Jin Y, Zhan Y-C (2023) Exosomal miRNA in early-stage hepatocellular carcinoma. World J Clin Cases 11:528–533. https://doi.org/10.12998/wjcc.v11.i3.528

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li J, Sun D, Pu W et al (2020) Circular RNAs in Cancer: Biogenesis, function, and clinical significance. Trends Cancer 6:319–336. https://doi.org/10.1016/j.trecan.2020.01.012

    Article  CAS  PubMed  Google Scholar 

  12. Hill M, Tran N (2018) MicroRNAs regulating MicroRNAs in Cancer. Trends Cancer 4:465–468. https://doi.org/10.1016/j.trecan.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  13. O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843. https://doi.org/10.1038/nature03677

    Article  CAS  PubMed  Google Scholar 

  14. Galardi S, Mercatelli N, Giorda E et al (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282:23716–23724. https://doi.org/10.1074/jbc.M701805200

    Article  CAS  PubMed  Google Scholar 

  15. Burns DM, D’Ambrogio A, Nottrott S, Richter JD (2011) CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 473:105–108. https://doi.org/10.1038/nature09908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hassan M, Elzallat M, Aboushousha T et al (2023) MicroRNA-122 mimic/microRNA-221 inhibitor combination as a novel therapeutic tool against hepatocellular carcinoma. Noncoding RNA Res 8:126–134. https://doi.org/10.1016/j.ncrna.2022.11.005

    Article  CAS  PubMed  Google Scholar 

  17. Kong W, Yang H, He L et al (2008) MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to Epithelial Cell plasticity by targeting RhoA. Mol Cell Biol 28:6773–6784. https://doi.org/10.1128/MCB.00941-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye J, Wu X, Wu D et al (2013) miRNA-27b targets vascular endothelial growth factor C to inhibit Tumor Progression and Angiogenesis in Colorectal Cancer. PLoS ONE 8:e60687. https://doi.org/10.1371/journal.pone.0060687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Würdinger T, Tannous BA, Saydam O et al (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393. https://doi.org/10.1016/j.ccr.2008.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu K, Pan Q, Zhang X et al (2013) MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma by promoting PDGFRA expression. Carcinogenesis 34:2071–2079. https://doi.org/10.1093/carcin/bgt160

    Article  CAS  PubMed  Google Scholar 

  21. Xu X, Tao Y, Shan L et al (2018) The role of MicroRNAs in Hepatocellular Carcinoma. J Cancer 9:3557–3569. https://doi.org/10.7150/jca.26350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li D, Yang P, Li H et al (2012) MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life Sci 91:440–447. https://doi.org/10.1016/j.lfs.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  23. Yan Y, Luo Y-C, Wan H-Y et al (2013) MicroRNA-10a is involved in the metastatic process by regulating eph tyrosine kinase receptor A4-Mediated epithelial-mesenchymal transition and adhesion in hepatoma cells*. Hepatology 57:667–677. https://doi.org/10.1002/hep.26071

    Article  CAS  PubMed  Google Scholar 

  24. Di Fazio P, Montalbano R, Neureiter D et al (2012) Downregulation of HMGA2 by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines. Exp Cell Res 318:1832–1843. https://doi.org/10.1016/j.yexcr.2012.04.018

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Jiang L, Ji X et al (2013) Hepatitis B viral RNA directly mediates down-regulation of the Tumor suppressor MicroRNA miR-15a/miR-16-1 in hepatocytes. J Biol Chem 288:18484–18493. https://doi.org/10.1074/jbc.M113.458158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fang Y, Xue J-L, Shen Q et al (2012) MicroRNA-7 inhibits tumor growth and metastasis by targeting the phosphoinositide 3-kinase/Akt pathway in hepatocellular carcinoma. Hepatology 55:1852–1862. https://doi.org/10.1002/hep.25576

    Article  CAS  PubMed  Google Scholar 

  27. Lan F-F, Wang H, Chen Y-C et al (2011) Hsa-let-7 g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16INK4A. Int J Cancer 128:319–331. https://doi.org/10.1002/ijc.25336

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Huang F, Wang J et al (2015) MiR-15b mediates liver cancer cells proliferation through targeting BCL-2. Int J Clin Exp Pathol 8:15677–15683

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang X, Liang L, Zhang X-F et al (2013) MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 58:158–170. https://doi.org/10.1002/hep.26305

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Lin S, Li JJ et al (2011) MYC protein inhibits transcription of the MicroRNA Cluster MC-let-7a-1∼let-7d via Noncanonical E-box. J Biol Chem 286:39703–39714. https://doi.org/10.1074/jbc.M111.293126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J-J, Chen J-T, Hua L et al (2017) miR-98 inhibits hepatocellular carcinoma cell proliferation via targeting EZH2 and suppressing Wnt/β-catenin signaling pathway. Biomed Pharmacother 85:472–478. https://doi.org/10.1016/j.biopha.2016.11.053

    Article  CAS  PubMed  Google Scholar 

  32. Li D, Liu X, Lin L et al (2011) MicroRNA-99a inhibits Hepatocellular Carcinoma Growth and correlates with prognosis of patients with Hepatocellular Carcinoma. J Biol Chem 286:36677–36685. https://doi.org/10.1074/jbc.M111.270561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang L, Zhang X, Jia L-T et al (2014) c-Myc-mediated epigenetic silencing of MicroRNA-101 contributes to dysregulation of multiple pathways in hepatocellular carcinoma: Hepatology. Hepatology 59:1850–1863. https://doi.org/10.1002/hep.26720

    Article  CAS  PubMed  Google Scholar 

  34. Hua S, Liu C, Liu L, Wu D (2018) Mir-142-3p inhibits aerobic glycolysis and cell proliferation in hepatocellular carcinoma via targeting LDHA. Biochem Biophys Res Commun 496:947–954. https://doi.org/10.1016/j.bbrc.2018.01.112

    Article  CAS  PubMed  Google Scholar 

  35. Bernal-Reyes R, Castro-Narro G, Malé-Velázquez R et al (2019) Consenso mexicano de la enfermedad por hígado graso no alcohólico. Revista de Gastroenterología de México 84:69–99. https://doi.org/10.1016/j.rgmx.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  36. Lang Q, Ling C (2012) MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA. Biochem Biophys Res Commun 426:247–252. https://doi.org/10.1016/j.bbrc.2012.08.075

    Article  CAS  PubMed  Google Scholar 

  37. Wong QW–L, Lung RW–M, Law PT–Y et al (2008) MicroRNA-223 is commonly repressed in Hepatocellular Carcinoma and Potentiates expression of Stathmin1. Gastroenterology 135:257–269. https://doi.org/10.1053/j.gastro.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  38. Fu Y, Mackowiak B, Feng D et al (2023) MicroRNA-223 attenuates hepatocarcinogenesis by blocking hypoxia-driven angiogenesis and immunosuppression. https://doi.org/10.1136/gutjnl-2022-327924. Gut gutjnl-2022-327924

  39. Zhang Z, Yin J, Yang J et al (2016) Mir-885-5p suppresses hepatocellular carcinoma metastasis and inhibits Wnt/β-catenin signaling pathway. Oncotarget 7:75038–75051. https://doi.org/10.18632/oncotarget.12602

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhao A, Zeng Q, Xie X et al (2012) MicroRNA-125b induces Cancer Cell apoptosis through suppression of Bcl-2 expression. J Genet Genomics 39:29–35. https://doi.org/10.1016/j.jgg.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  41. Buurman R, Gürlevik E, Schäffer V et al (2012) Histone deacetylases activate hepatocyte growth factor signaling by repressing MicroRNA-449 in Hepatocellular Carcinoma cells. Gastroenterology 143:811–820e15. https://doi.org/10.1053/j.gastro.2012.05.033

    Article  CAS  PubMed  Google Scholar 

  42. Bao H, Li X, Li H et al (2017) MicroRNA-144 inhibits hepatocellular carcinoma cell proliferation, invasion and migration by targeting ZFX. J Biosci 42:103–111. https://doi.org/10.1007/s12038-016-9662-5

    Article  CAS  PubMed  Google Scholar 

  43. Zheng Y, Yin L, Chen H et al (2012) miR-376a suppresses proliferation and induces apoptosis in hepatocellular carcinoma. FEBS Lett 586:2396–2403. https://doi.org/10.1016/j.febslet.2012.05.054

    Article  CAS  PubMed  Google Scholar 

  44. Wei W, Wanjun L, Hui S et al (2013) miR-203 inhibits proliferation of HCC cells by targeting survivin: MIR-203 INHIBITS HCC PROLIFERATION VIA SURVIVIN. Cell Biochem Funct 31:82–85. https://doi.org/10.1002/cbf.2863

    Article  CAS  PubMed  Google Scholar 

  45. Huang N, Lin J, Ruan J et al (2012) MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett 586:884–891. https://doi.org/10.1016/j.febslet.2012.02.017

    Article  CAS  PubMed  Google Scholar 

  46. Bi Q, Tang S, Xia L et al (2012) Ectopic expression of MiR-125a inhibits the proliferation and metastasis of Hepatocellular Carcinoma by Targeting MMP11 and VEGF. PLoS ONE 7:e40169. https://doi.org/10.1371/journal.pone.0040169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu H, Wang G, Zhou X et al (2016) miR-1299 suppresses cell proliferation of hepatocellular carcinoma (HCC) by targeting CDK6. Biomed Pharmacother 83:792–797. https://doi.org/10.1016/j.biopha.2016.07.037

    Article  CAS  PubMed  Google Scholar 

  48. Wang L, Bo X, Zheng Q et al (2016) miR-296 inhibits proliferation and induces apoptosis by targeting FGFR1 in human hepatocellular carcinoma. FEBS Lett 590:4252–4262. https://doi.org/10.1002/1873-3468.12442

    Article  CAS  PubMed  Google Scholar 

  49. You X, Liu F, Zhang T et al (2013) Hepatitis B virus X protein upregulates oncogene Rab18 to result in the dysregulation of lipogenesis and proliferation of hepatoma cells. Carcinogenesis 34:1644–1652. https://doi.org/10.1093/carcin/bgt089

    Article  CAS  PubMed  Google Scholar 

  50. Weng Z, Wang D, Zhao W et al (2011) microRNA-450a targets DNA methyltransferase 3a in hepatocellular carcinoma. Experimental and Therapeutic Medicine 2:951–955. https://doi.org/10.3892/etm.2011.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu W, Yeh S, Lu C et al (2009) MicroRNA-18a prevents estrogen Receptor-α expression, promoting proliferation of Hepatocellular Carcinoma cells. Gastroenterology 136:683–693. https://doi.org/10.1053/j.gastro.2008.10.029

    Article  CAS  PubMed  Google Scholar 

  52. Yuan Q, Loya K, Rani B et al (2013) MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology 57:299–310. https://doi.org/10.1002/hep.25984

    Article  CAS  PubMed  Google Scholar 

  53. Yang W, Dou C, Wang Y et al (2015) MicroRNA-92a contributes to tumor growth of human hepatocellular carcinoma by targeting FBXW7. Oncol Rep 34:2576–2584. https://doi.org/10.3892/or.2015.4210

    Article  CAS  PubMed  Google Scholar 

  54. Zhang L, Yang L, Liu X et al (2013) MicroRNA-657 promotes tumorigenesis in hepatocellular carcinoma by targeting transducin-like enhancer protein 1 through nuclear factor kappa B pathways. Hepatology 57:1919–1930. https://doi.org/10.1002/hep.26162

    Article  CAS  PubMed  Google Scholar 

  55. Iwai N, Yasui K, Tomie A et al (2018) Oncogenic mir-96-5p inhibits apoptosis by targeting the caspase-9 gene in hepatocellular carcinoma. Int J Oncol. https://doi.org/10.3892/ijo.2018.4369

    Article  PubMed  Google Scholar 

  56. Fornari F, Milazzo M, Chieco P et al (2012) In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2: miR-519d targets p21, PTEN, AKT3 and TIMP2. J Pathol 227:275–285. https://doi.org/10.1002/path.3995

    Article  CAS  PubMed  Google Scholar 

  57. Tan Y, Zhao L (2020) miR-103 promotes hepatocellular carcinoma cell proliferation and migration in the simulation transition zone of RFA through PI3K/Akt signaling pathway by targeting PTEN. Int J Clin Exp Pathol 13:473–479

    PubMed  PubMed Central  Google Scholar 

  58. Liang W, Liao Y, Li Z et al (2018) MicroRNA-644a promotes apoptosis of hepatocellular carcinoma cells by downregulating the expression of heat shock factor 1. Cell Commun Signal 16:30. https://doi.org/10.1186/s12964-018-0244-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang Z, Wen J, Yu J et al (2020) MicroRNA-148a-3p inhibits progression of hepatocelluar carcimoma by repressing SMAD2 expression in an Ago2 dependent manner. J Exp Clin Cancer Res 39:150. https://doi.org/10.1186/s13046-020-01649-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Z, Han Y, Sun G et al (2019) MicroRNA-325-3p inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma by down-regulation of aquaporin 5. Cell Mol Biol Lett 24:13. https://doi.org/10.1186/s11658-019-0137-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cao M-Q, You A-B, Zhu X-D et al (2018) Mir-182-5p promotes hepatocellular carcinoma progression by repressing FOXO3a. J Hematol Oncol 11:12. https://doi.org/10.1186/s13045-018-0555-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang X, Li F, Cheng J et al (2023) MicroRNA-17 family targets RUNX3 to increase Proliferation and Migration of Hepatocellular Carcinoma. Crit Rev Eukaryot Gene Expr 33:71–84. https://doi.org/10.1615/CritRevEukaryotGeneExpr.v33.i3.70

    Article  PubMed  Google Scholar 

  63. Gu Y, Feng X, Jin Y et al (2023) Upregulation of miRNA-10a-5p promotes tumor progression in cervical cancer by suppressing UBE2I signaling. J Obstet Gynaecol 43:2171283. https://doi.org/10.1080/01443615.2023.2171283

    Article  CAS  PubMed  Google Scholar 

  64. Yang P, Li Q-J, Feng Y et al (2012) TGF-β-miR-34a-CCL22 Signaling-Induced Treg Cell Recruitment promotes venous metastases of HBV-Positive Hepatocellular Carcinoma. Cancer Cell 22:291–303. https://doi.org/10.1016/j.ccr.2012.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou H-C, Fang J-H, Shang L-R et al (2016) MicroRNAs miR-125b and miR-100 suppress metastasis of hepatocellular carcinoma by disrupting the formation of vessels that encapsulate tumour clusters: miR-125b and miR-100 abrogate VETC-dependent metastasis. J Pathol 240:450–460. https://doi.org/10.1002/path.4804

    Article  CAS  PubMed  Google Scholar 

  66. Zheng F, Liao Y-J, Cai M-Y et al (2015) Systemic delivery of MicroRNA-101 potently inhibits Hepatocellular Carcinoma in vivo by repressing multiple targets. PLoS Genet 11:e1004873. https://doi.org/10.1371/journal.pgen.1004873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li Y, Xu D, Bao C et al (2015) MicroRNA-135b, a HSF1 target, promotes tumor invasion and metastasis by regulating RECK and EVI5 in hepatocellular carcinoma. Oncotarget 6:2421–2433. https://doi.org/10.18632/oncotarget.2965

    Article  PubMed  Google Scholar 

  68. Liu L-L, Lu S-X, Li M et al (2014) FoxD3-regulated microRNA-137 suppresses tumour growth and metastasis in human hepatocellular carcinoma by targeting AKT2. Oncotarget 5:5113–5124. https://doi.org/10.18632/oncotarget.2089

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shiozawa Y, Havens AM, Jung Y et al (2008) Annexin II/Annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105:370–380. https://doi.org/10.1002/jcb.21835

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang J-P, Zeng C, Xu L et al (2014) MicroRNA-148a suppresses the epithelial–mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene 33:4069–4076. https://doi.org/10.1038/onc.2013.369

    Article  CAS  PubMed  Google Scholar 

  71. Gou Y, Zhai F, Zhang L, Cui L (2017) RUNX3 regulates hepatocellular carcinoma cell metastasis via targeting miR-186/E-cadherin/EMT pathway. Oncotarget 8:61475–61486. https://doi.org/10.18632/oncotarget.18424

    Article  PubMed Central  Google Scholar 

  72. Dou C, Liu Z, Xu M et al (2016) Mir-187-3p inhibits the metastasis and epithelial–mesenchymal transition of hepatocellular carcinoma by targeting S100A4. Cancer Lett 381:380–390. https://doi.org/10.1016/j.canlet.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  73. Okazaki I, Inagaki Y (2012) Novel strategies for Hepatocellular Carcinoma based on MMPs Science. ACAMC 12:753–763. https://doi.org/10.2174/187152012802650165

    Article  CAS  Google Scholar 

  74. Yang X, Wang J, Qu S et al (2015) MicroRNA-200a suppresses metastatic potential of side population cells in human hepatocellular carcinoma by decreasing ZEB2. Oncotarget 6:7918–7929. https://doi.org/10.18632/oncotarget.3486

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zheng X-B, Chen X-B, Xu L-L et al (2017) miR-203 inhibits augmented proliferation and metastasis of hepatocellular carcinoma residual in the promoted regenerating liver. Cancer Sci 108:338–346. https://doi.org/10.1111/cas.13167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chang R-M, Yang H, Fang F et al (2014) MicroRNA-331-3p promotes proliferation and metastasis of hepatocellular carcinoma by targeting PH domain and leucine-rich repeat protein phosphatase: HEPATOLOGY, Vol. XX, No. X, 2014 CHANG ET AL. Hepatology 60:1251–1263. https://doi.org/10.1002/hep.27221

  77. Zhang H, Liu H, Bi H (2017) MicroRNA-345 inhibits hepatocellular carcinoma metastasis by inhibiting YAP1. Oncol Rep 38:843–849. https://doi.org/10.3892/or.2017.5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu J, Lin H, Li G et al (2016) The mir-367-3p increases Sorafenib Chemotherapy Efficacy to suppress Hepatocellular Carcinoma Metastasis through altering the androgen receptor signals. EBioMedicine 12:55–67. https://doi.org/10.1016/j.ebiom.2016.07.013

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang J, Yang Y, Yang T et al (2015) Double-negative feedback loop between MicroRNA-422a and forkhead box (FOX)G1/Q1/E1 regulates hepatocellular carcinoma tumor growth and metastasis. Hepatology 61:561–573. https://doi.org/10.1002/hep.27491

    Article  CAS  PubMed  Google Scholar 

  80. Liu S, Guo W, Shi J et al (2012) MicroRNA-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma. J Hepatol 56:389–396. https://doi.org/10.1016/j.jhep.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  81. Chen S, Liu B, Xu J et al (2015) MiR-449a suppresses the epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma by multiple targets. BMC Cancer 15:706. https://doi.org/10.1186/s12885-015-1738-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Luo C, Yin D, Zhan H et al (2018) microRNA-501-3p suppresses metastasis and progression of hepatocellular carcinoma through targeting LIN7A. Cell Death Dis 9:535. https://doi.org/10.1038/s41419-018-0577-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tao Z-H, Wan J-L, Zeng L-Y et al (2013) miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med 210:789–803. https://doi.org/10.1084/jem.20120153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bolós V, Peinado H, Pérez-Moreno MA et al (2003) The transcription factor slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with snail and E47 repressors. J Cell Sci 116:499–511. https://doi.org/10.1242/jcs.00224

    Article  CAS  PubMed  Google Scholar 

  85. Li C, Jiang Y, Miao R et al (2017) MicroRNA-1271 functions as a metastasis and epithelial-mesenchymal transition inhibitor in human HCC by targeting the PTP4A1/c-Src axis. Int J Oncol. https://doi.org/10.3892/ijo.2017.4224

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shih Y-T, Wang M-C, Zhou J et al (2015) Endothelial progenitors promote hepatocarcinoma intrahepatic metastasis through monocyte chemotactic protein-1 induction of microRNA-21. Gut 64:1132–1147. https://doi.org/10.1136/gutjnl-2013-306302

    Article  CAS  PubMed  Google Scholar 

  87. Huang H, Liu Y, Yu P et al (2018) MiR-23a transcriptional activated by Runx2 increases metastatic potential of mouse hepatoma cell via directly targeting Mgat3. Sci Rep 8:7366. https://doi.org/10.1038/s41598-018-25768-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen Q, Yin D, Zhang Y et al (2017) MicroRNA-29a induces loss of 5-hydroxymethylcytosine and promotes metastasis of hepatocellular carcinoma through a TET–SOCS1–MMP9 signaling axis. Cell Death Dis 8:e2906–e2906. https://doi.org/10.1038/cddis.2017.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Han L-L, Yin X-R, Zhang S-Q (2018) miR-103 promotes the metastasis and EMT of hepatocellular carcinoma by directly inhibiting LATS2. Int J Oncol 53:2433–2444. https://doi.org/10.3892/ijo.2018.4580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chang R-M, Xu J-F, Fang F et al (2016) MicroRNA-130b promotes proliferation and EMT-induced metastasis via PTEN/p-AKT/HIF-1α signaling. Tumor Biol 37:10609–10619. https://doi.org/10.1007/s13277-016-4919-z

    Article  CAS  Google Scholar 

  91. Zhang X, Liu S, Hu T et al (2009) Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology 50:490–499. https://doi.org/10.1002/hep.23008

    Article  CAS  PubMed  Google Scholar 

  92. Yan-Chun L, Hong-Mei Y, Zhi-Hong C et al (2017) MicroRNA-192-5p promote the proliferation and metastasis of Hepatocellular Carcinoma cell by targeting SEMA3A. Appl Immunohistochem Mol Morphol 25:251–260. https://doi.org/10.1097/PAI.0000000000000296

    Article  CAS  PubMed  Google Scholar 

  93. Yang J, Sheng Y-Y, Wei J-W et al (2018) MicroRNA-219-5p promotes Tumor Growth and Metastasis of Hepatocellular Carcinoma by regulating cadherin 1. Biomed Res Int 2018:1–10. https://doi.org/10.1155/2018/4793971

    Article  CAS  Google Scholar 

  94. Lin Z-S, Chu H-C, Yen Y-C et al (2012) Krüppel-Like factor 4, a tumor suppressor in Hepatocellular Carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression. PLoS ONE 7:e43593. https://doi.org/10.1371/journal.pone.0043593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tang J, Li L, Huang W et al (2015) MiR-429 increases the metastatic capability of HCC via regulating classic wnt pathway rather than epithelial–mesenchymal transition. Cancer Lett 364:33–43. https://doi.org/10.1016/j.canlet.2015.04.023

    Article  CAS  PubMed  Google Scholar 

  96. Kachroo N, Valencia T, Warren AY, Gnanapragasam VJ (2013) Evidence for downregulation of the negative regulator SPRED2 in clinical prostate cancer. Br J Cancer 108:597–601. https://doi.org/10.1038/bjc.2012.507

    Article  CAS  PubMed  Google Scholar 

  97. Fang T, Lv H, Lv G et al (2018) Tumor-derived exosomal mir-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 9:191. https://doi.org/10.1038/s41467-017-02583-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu Z, Sun J, Wang X, Cao Z (2021) MicroRNA–129–5p promotes proliferation and metastasis of hepatocellular carcinoma by regulating the BMP2 gene. Exp Ther Med 21:257. https://doi.org/10.3892/etm.2021.9688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cui S, Zhang K, Li C et al (2016) Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A. Oncotarget 7:78009–78028. https://doi.org/10.18632/oncotarget.12870

    Article  PubMed  PubMed Central  Google Scholar 

  100. Luo G, Chao Y-L, Tang B et al (2015) miR-149 represses metastasis of hepatocellular carcinoma by targeting actin-regulatory proteins PPM1F. Oncotarget 6:37808–37823. https://doi.org/10.18632/oncotarget.5676

    Article  PubMed  PubMed Central  Google Scholar 

  101. Toro AU, Shukla SK, Bansal P (2022) Micronome revealed mir-205-5p as Key Regulator of VEGFA during Cancer Related Angiogenesis in Hepatocellular Carcinoma. Mol Biotechnol. https://doi.org/10.1007/s12033-022-00619-5

    Article  PubMed  Google Scholar 

  102. Holmes DI, Zachary I (2005) [No title found]. Genome Biol 6:209. https://doi.org/10.1186/gb-2005-6-2-209

    Article  PubMed  PubMed Central  Google Scholar 

  103. Annese T, Tamma R, De Giorgis M, Ribatti D (2020) microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 10:581007. https://doi.org/10.3389/fonc.2020.581007

    Article  PubMed  PubMed Central  Google Scholar 

  104. Li D, Wang T, Sun F-F et al (2021) MicroRNA-375 represses tumor angiogenesis and reverses resistance to sorafenib in hepatocarcinoma. Cancer Gene Ther 28:126–140. https://doi.org/10.1038/s41417-020-0191-x

    Article  CAS  PubMed  Google Scholar 

  105. Moh-Moh-Aung A, Fujisawa M, Ito S et al (2020) Decreased miR-200b-3p in cancer cells leads to angiogenesis in HCC by enhancing endothelial ERG expression. Sci Rep 10:10418. https://doi.org/10.1038/s41598-020-67425-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to Mr. Abdulaziz Umar Kurya for his relentless efforts towards the english proofreading of our manuscript.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudheesh K. Shukla or Parveen Bansal.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toro, A.U., Shukla, S.K. & Bansal, P. Emerging role of MicroRNA-Based theranostics in Hepatocellular Carcinoma. Mol Biol Rep 50, 7681–7691 (2023). https://doi.org/10.1007/s11033-023-08586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08586-z

Keywords

Navigation