Skip to main content
Log in

Insulin signaling pathway assessment by enhancing antioxidant activity due to morin using in vitro rat skeletal muscle L6 myotubes cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Plant-derived phytochemicals such as flavonoids have been explored to be powerful antioxidants that protect against oxidative stress-related diseases. In the present study, Morin, a flavonoid compound was studied for its antioxidant and antidiabetic properties in relation to oxidative stress in insulin resistant models conducted in rat skeletal muscle L6 cell line model.

Methods

Evaluation of antioxidant property of morin was assayed using in vitro methods such as cell viability by MTT assay, estimation of SOD and CAT activity and NO scavenging activity. The anti-oxidative nature of morin on L6 cell line was conducted by the DCF-DA fluorescent activity. Glucose uptake in morin treated L6 myotubes are accessed by 2-NBDG assay in the presence or absence of IRTK and PI3K inhibitors. Further glycogen content estimation due to the morin treatment in L6 myotubes was performed. Antioxidant and insulin signaling pathway gene expression was examined over RT-PCR analysis.

Results

Morin has a negligible cytotoxic effect at doses of 20, 40, 60, 80, and 100 µM concentration according to cell viability assay. Morin revealed that the levels of the antioxidant enzymes SOD and CAT in L6 myotubes had increased. When the cells were subjected to the nitro blue tetrazolium assay, morin lowered reactive oxygen species (ROS) formation at 60 µM concentration displaying 39% ROS generation in oxidative stress condition. Lesser NO activity and a drop in green fluorescence emission in the DCFDA assay, demonstrating its anti-oxidative nature by reducing ROS formation in vitro. Glucose uptake by the L6 myotube cells using 2-NBDG, and with IRTK and PI3K inhibitors (genistein and wortmannin) showed a significant increase in glucose uptake by the cells which shows the up regulated GLUT-4 movement from intracellular pool to the plasma membrane. Morin (60 µM) significantly enhanced the expression of antioxidant genes GPx, GST and GCS as well as insulin signalling genes IRTK, IRS-1, PI3K, GLUT-4, GSK-3β and GS in L6 myotubes treated cells.

Conclusion

Morin has the ability to act as an anti-oxidant by lowering ROS levels and demonstrating insulin mimetic activity by reversing insulin resistance associated with oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-NBDG:

2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose

CAT:

Catalase

DCF-DA:

Dichlorofluorescein diacetate

DM:

Diabetes mellitus

DMEM:

Dulbecco’s modified eagle’s medium

DMSO:

Dimethyl sulfoxide

FBS:

Fetal bovine serum

GCS:

Glutamyl cysteine synthetase

GLUT-4:

Glucose transporter type 4

GPx:

Glutathione peroxidase

GS:

Glycogen synthase

GSK-3β:

Glycogen synthase kinase 3β

GST:

Glutathione S-transferase

H2O2 :

Hydrogen peroxide

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

IRS:

Insulin receptor substrate

IRTK:

Insulin receptor tyrosine kinase

IRβ:

Insulin receptor β

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide

NBT:

Nitro blue tetrazolium

NCCS:

National center for cell science

PBS:

Phosphate buffer saline

PI3K:

Phosphoinositide 3-kinases

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

T2DM:

Type 2 diabetic mellitus

References

  1. Son D, Hwang S, Kim M-H et al (2015) Anti-diabetic and hepato-renal protective effects of ziyuglycoside II methyl ester in type 2 diabetic mice. Nutrients 7:5469–5483. https://doi.org/10.3390/nu7075232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. George J, Liddle C, Samarasinghe D et al (2002) NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 35:373–379. https://doi.org/10.1053/jhep.2002.30692

    Article  PubMed  Google Scholar 

  3. Hoehn KL, Hohnen-Behrens C, Cederberg A et al (2008) IRS1-independent defects define major nodes of insulin resistance. Cell Metab 7:421–433. https://doi.org/10.1016/j.cmet.2008.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Issac PK, Guru A, Chandrakumar SS et al (2020) Molecular process of glucose uptake and glycogen storage due to hamamelitannin via insulin signalling cascade in glucose metabolism. Mol Biol Rep 47:6727–6740. https://doi.org/10.1007/s11033-020-05728-5

    Article  CAS  PubMed  Google Scholar 

  5. Bonnefont-Rousselot D, Bastard JP, Jaudon MC, Delattre J (2000) Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab 26:163–176

    CAS  PubMed  Google Scholar 

  6. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17:171–180. https://doi.org/10.1046/j.1464-5491.2000.00259.x

    Article  CAS  PubMed  Google Scholar 

  7. Inouye M, Mio T, Sumino K (1999) Link between glycation and lipoxidation in red blood cells in diabetes. Clin Chim Acta 285:35–44. https://doi.org/10.1016/S0009-8981(99)00065-0

    Article  CAS  PubMed  Google Scholar 

  8. Schlernitzauer A, Oiry C, Hamad R et al (2013) Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans. PLoS ONE 8:1–11. https://doi.org/10.1371/journal.pone.0078788

    Article  CAS  Google Scholar 

  9. Rudich A, Tirosh A, Potashnik R et al (1998) Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 47:1562–1569. https://doi.org/10.2337/diabetes.47.10.1562

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Wang L, Lu H et al (2020) Preservation of hydrogen peroxide-induced oxidative damage in HepG-2 cells by rice protein hydrolysates pretreated with electron beams. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-64814-7

    Article  CAS  Google Scholar 

  11. Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010:1–11. https://doi.org/10.1155/2010/453892

    Article  CAS  Google Scholar 

  12. Metodiewa D, Kochman A, Karolczak S (1997) Evidence for antiradical and antioxidant properties of four biologically active N, N-diethylamioethyl ethers of flavanone oximes: a comparison with natural polyphenolic flavonoid (rutin) action. Biochem Mol Biol Int 41:1067–1075. https://doi.org/10.1080/15216549700202141

    Article  CAS  PubMed  Google Scholar 

  13. Walker EH, Pacold ME, Perisic O et al (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6:909–919. https://doi.org/10.1016/S1097-2765(05)00089-4

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi T, Sawa K, Kawasaki M et al (1988) Inhibition of cow’s milk xanthine oxidase by flavonoids. J Nat Prod 51:345–348. https://doi.org/10.1021/np50056a030

    Article  CAS  PubMed  Google Scholar 

  15. Basile A, Sorbo S, Giordano S et al (2000) Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 71:110–116. https://doi.org/10.1016/S0367-326X(00)00185-4

    Article  Google Scholar 

  16. Caillet S, Yu H, Lessard S et al (2007) Fenton reaction applied for screening natural antioxidants. Food Chem 100:542–552. https://doi.org/10.1016/j.foodchem.2005.10.009

    Article  CAS  Google Scholar 

  17. Gálvez J, Coelho G, Crespo ME et al (2001) Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Aliment Pharmacol Ther 15:2027–2039. https://doi.org/10.1046/j.1365-2036.2001.01133.x

    Article  PubMed  Google Scholar 

  18. Manna SK, Aggarwal RS, Sethi G et al (2007) Morin (3,5,7,2′,4′-pentahydroxyflavone) abolishes nuclear factor-κB activation induced by various carcinogens and inflammatory stimuli, leading to suppression of nuclear factor-κB—regulated gene expression and up-regulation of apoptosis. Clin Cancer Res 13:2290–2297. https://doi.org/10.1158/1078-0432.CCR-06-2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi CW, Kim SC, Hwang SS et al (2002) Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 163:1161–1168. https://doi.org/10.1016/S0168-9452(02)00332-1

    Article  CAS  Google Scholar 

  20. Malešev D, Kuntić V (2007) Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J Serbian Chem Soc 72:921–939. https://doi.org/10.2298/JSC0710921M

    Article  CAS  Google Scholar 

  21. Wang N, Zhang J, Qin M et al (2018) Amelioration of streptozotocin—induced pancreatic β cell damage by morin: involvement of the AMPK—FOXO3—catalase signaling pathway. Int J Mol Med. https://doi.org/10.3892/ijmm.2017.3357

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kitagawa S, Sakamoto H, Tano H (2004) Inhibitory effects of flavonoids on free radical-induced hemolysis and their oxidative effects on hemoglobin. Chem Pharm Bull 52:999–1001. https://doi.org/10.1248/cpb.52.999

    Article  CAS  Google Scholar 

  23. Hodek P, Trefil P, Stiborová M (2002) Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact 139:1–21. https://doi.org/10.1016/S0009-2797(01)00285-X

    Article  CAS  PubMed  Google Scholar 

  24. Rai M, Jogee PS, Agarkar G, Dos SCA (2016) Anticancer activities of Withania somnifera: current research, formulations, and future perspectives. Pharm Biol 54:189–197. https://doi.org/10.3109/13880209.2015.1027778

    Article  CAS  PubMed  Google Scholar 

  25. Guru A, Lite C, Freddy AJ et al (2021) Intracellular ROS scavenging and antioxidant regulation of WL15 from cysteine and glycine-rich protein 2 demonstrated in zebrafish in vivo model. Dev Comp Immunol 114:103863. https://doi.org/10.1016/j.dci.2020.103863

    Article  CAS  PubMed  Google Scholar 

  26. Esfandiari N, Sharma RK, Saleh RA et al (2003) Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl 24:862–870. https://doi.org/10.1002/j.1939-4640.2003.tb03137.x

    Article  CAS  PubMed  Google Scholar 

  27. Kim KJ, Lee BY (2012) Fucoidan from the sporophyll of Undaria pinnatifida suppresses adipocyte differentiation by inhibition of inflammation-related cytokines in 3T3-L1 cells. Nutr Res 32:439–447. https://doi.org/10.1016/j.nutres.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  28. Sarkar P, Stefi RV, Pasupuleti M et al (2020) Antioxidant molecular mechanism of adenosyl homocysteinase from cyanobacteria and its wound healing process in fibroblast cells. Mol Biol Rep 47:1821–1834. https://doi.org/10.1007/s11033-020-05276-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Misra HPFI (1972) The role of superoxide anion in the epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  PubMed  Google Scholar 

  30. Kanaujia A, Duggar R, Pannakal ST et al (2010) Insulinomimetic activity of two new gallotannins from the fruits of Capparis moonii. Bioorg Med Chem 18:3940–3945. https://doi.org/10.1016/j.bmc.2010.04.032

    Article  CAS  PubMed  Google Scholar 

  31. Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim acta 196:143–151. https://doi.org/10.1016/0009-8981(91)90067-M

    Article  CAS  PubMed  Google Scholar 

  32. Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80. https://doi.org/10.1016/j.jbbm.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  33. Sannasimuthu A, Kumaresan V, Anilkumar S et al (2019) Design and characterization of a novel Arthrospira platensis glutathione oxido-reductase-derived antioxidant peptide GM15 and its potent anti-cancer activity via caspase-9 mediated apoptosis in oral cancer cells. Free Radic Biol Med 135:198–209. https://doi.org/10.1016/j.freeradbiomed.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  34. Bernini R, Barontini M, Cis V et al (2018) Synthesis and evaluation of the antioxidant activity of lipophilic phenethyl trifluoroacetate esters by in vitro ABTS, DPPH and in cell-culture DCF assays. Molecules 23:1–14. https://doi.org/10.3390/molecules23010208

    Article  CAS  Google Scholar 

  35. Lite C, Ahmed SSSJ, Santosh W, Seetharaman B (2019) Prenatal exposure to bisphenol-A altered miRNA-224 and protein expression of aromatase in ovarian granulosa cells concomitant with elevated serum estradiol levels in F 1 adult offspring. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22317

    Article  PubMed  Google Scholar 

  36. Blodgett AB, Kothinti RK, Kamyshko I et al (2011) A fluorescence method for measurement of glucose transport in kidney cells. Diabetes Technol Ther 13:743–751. https://doi.org/10.1089/dia.2011.0041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang R, Fang M, Dillon GH (1999) The tyrosine kinase inhibitor genistein directly inhibits GABA A receptors. Mol Brain Res 67:177–183

    Article  CAS  PubMed  Google Scholar 

  38. Anand S, Arasakumari M, Prabu P, Amalraj AJ (2016) Anti-diabetic and aldose reductase inhibitory potential of Psidium guajava by in vitro analysis. Int J Pharm Pharm Sci 8:271–276

    Article  CAS  Google Scholar 

  39. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. https://doi.org/10.1016/0003-2697(87)90021-2

    Article  CAS  PubMed  Google Scholar 

  40. Bhatt P, Kumaresan V, Palanisamy R et al (2014) Immunological role of C4 CC chemokine-1 from snakehead murrel Channa striatus. Mol Immunol 57:292–301. https://doi.org/10.1016/j.molimm.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  41. Kumaresan V, Bhatt P, Ganesh MR et al (2015) A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Mol Immunol 68:421–433. https://doi.org/10.1016/j.molimm.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  42. Arockiaraj J, Gnanam AJ, Muthukrishnan D et al (2013) Macrobrachium rosenbergii cathepsin L: molecular characterization and gene expression in response to viral and bacterial infections. Microbiol Res 168:569–579. https://doi.org/10.1016/j.micres.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  43. Dhanya R, Arun KB, Syama HP et al (2014) Rutin and quercetin enhance glucose uptake in L6 myotubes under oxidative stress induced by tertiary butyl hydrogen peroxide. Food Chem 158:546–554. https://doi.org/10.1016/j.foodchem.2014.02.151

    Article  CAS  PubMed  Google Scholar 

  44. Praveen Kumar I, Arun J, Sri Snehaa C, Sujatha S (2018) Tannins of Jatropha gossypifolia exert anti-hyperlipidemic effect. Eur Biomed Pharm Sci 5:607–614

    Google Scholar 

  45. Issac PK, Ishan M, Sujatha S, Alwin D (2017) Antihyperglycemic and antihyperlipidemic activity of Jatropha gossypifolia methanolic extract in streptozotocin-nicotinamide induced diabetic rats. Asian J Pharm Clin Res 10:326–330

    Google Scholar 

  46. Pandey KB, Rizvi SI (2011) Biomarkers of oxidative stress in red blood cells. Biomed Pap 155:131–136. https://doi.org/10.5507/bp.2011.027

    Article  CAS  Google Scholar 

  47. Qureshi AA, Khan DA, Mahjabeen W et al (2012) Suppression of nitric oxide production and cardiovascular risk factors in healthy seniors and hypercholesterolemic subjects by a combination of polyphenols and vitamins. J Clin Exp Cardiolog 01:1–30. https://doi.org/10.4172/2155-9880.s5-008

    Article  Google Scholar 

  48. Kumar P, Ajay I, Sri G et al (2020) Molecular process of glucose uptake and glycogen storage due to hamamelitannin via insulin signalling cascade in glucose metabolism. Mol Biol Rep. https://doi.org/10.1007/s11033-020-05728-5

    Article  PubMed  Google Scholar 

  49. Issac PK, Lite C, Guru A et al (2021) Tryptophan-tagged peptide from serine threonine-protein kinase of Channa striatus improves antioxidant defence in L6 myotubes and attenuates caspase 3–dependent apoptotic response in zebrafish larvae. Fish Physiol Biochem 47:293–311. https://doi.org/10.1007/s10695-020-00912-7

    Article  CAS  PubMed  Google Scholar 

  50. Sujatha S, Anand S, Sangeetha KN et al (2010) Biological evaluation of (3β)-STIGMAST-5-EN-3-OL as potent anti-diabetic agent in regulating glucose transport using in vitro model. Int J Diabetes Mellit 2:101–109. https://doi.org/10.1016/j.ijdm.2009.12.013

    Article  CAS  Google Scholar 

  51. Gumieniczek A, Hopkała H, Wójtowicz Z, Nieradko M (2001) Differences in antioxidant status in skeletal muscle tissue in experimental diabetes. Clin Chim Acta 314:39–45. https://doi.org/10.1016/S0009-8981(01)00680-5

    Article  CAS  PubMed  Google Scholar 

  52. Nagalakshmi K, Rajaguru PY, Issac PK, Sujatha S (2017) Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles. Asian J Pharm Sci 12:353–362. https://doi.org/10.1016/j.ajps.2017.02.003

    Article  Google Scholar 

  53. Bharadwaja S, Issac PK, Cleta J et al (2021) An in vitro mechanistic approach towards understanding the distinct pathways regulating insulin resistance and adipogenesis by apocynin. J Biosci 46:1–16. https://doi.org/10.1007/s12038-020-00134-2

    Article  CAS  Google Scholar 

  54. Ishiki M, Klip A (2005) Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology 146:5071–5078. https://doi.org/10.1210/en.2005-0850

    Article  CAS  PubMed  Google Scholar 

  55. Guru A, Issac PK, Saraswathi N et al (2021) Deteriorating insulin resistance due to WL15 peptide from cysteine and glycine-rich protein 2 in high glucose induced rat skeletal muscle L6 cells. Cell Biol Int. https://doi.org/10.1002/cbin.11608

    Article  PubMed  Google Scholar 

  56. Koivisto UM, Martinez-Valdez H, Bilan PJ et al (1991) Differential regulation of the GLUT-1 and GLUT-4 glucose transport systems by glucose and insulin in L6 muscle cells in culture. J Biol Chem 266:2615–2621

    Article  CAS  PubMed  Google Scholar 

  57. Ciaraldi TP, Huber-Knudsen K, Hickman M, Olefsky JM (1995) Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism 44:976–981

    Article  CAS  PubMed  Google Scholar 

  58. Parry HA, Rivera ME, Vaughan RA, Sunderland KL (2020) Uncarboxylated osteocalcin decreases insulin-stimulated glucose uptake without affecting insulin signaling and regulators of mitochondrial biogenesis in myotubes. J Physiol Biochem. https://doi.org/10.1007/s13105-020-00732-6

    Article  PubMed  Google Scholar 

  59. Schrauwen P, Hesselink MKC (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53:1412–1417. https://doi.org/10.2337/diabetes.53.6.1412

    Article  CAS  PubMed  Google Scholar 

  60. Chen HL, Lan XZ, Wu YY et al (2017) The antioxidant activity and nitric oxide production of extracts obtained from the leaves of Chenopodium quinoa Willd. Biomed 7:24–28. https://doi.org/10.1051/bmdcn/2017070424

    Article  Google Scholar 

  61. Itharat A, Sayompark S, Hansakul P, Dechayont B (2016) In vitro antioxidant activities of extracts of bauhinia strychnifolia stems and leaves: comparison with activities in green tea extracts. Med Aromat Plants 05:1–7. https://doi.org/10.4172/2167-0412.1000243

    Article  CAS  Google Scholar 

  62. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. https://doi.org/10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  63. Lee MH, Cha HJ, Choi EO et al (2017) Antioxidant and cytoprotective effects of morin against hydrogen peroxide-induced oxidative stress are associated with the induction of Nrf-2-mediated HO-1 expression in V79–4 Chinese hamster lung fibroblasts. Int J Mol Med 39:672–680. https://doi.org/10.3892/ijmm.2017.2871

    Article  CAS  PubMed  Google Scholar 

  64. Bachewal P, Gundu C, Yerra VG et al (2018) Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. BioFactors 44:109–122. https://doi.org/10.1002/biof.1397

    Article  CAS  PubMed  Google Scholar 

  65. Zou C, Wang Y, Shen Z (2005) 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods 64:207–215. https://doi.org/10.1016/j.jbbm.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  66. Muthusamy VS, Anand S, Sangeetha KN et al (2008) Tannins present in Cichorium intybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition. Chem Biol Interact 174:69–78. https://doi.org/10.1016/j.cbi.2008.04.016

    Article  CAS  PubMed  Google Scholar 

  67. Anand S, Muthusamy VS, Sujatha S et al (2010) Aloe emodin glycosides stimulates glucose transport and glycogen storage through PI3K dependent mechanism in L6 myotubes and inhibits adipocyte differentiation in 3T3L1 adipocytes. FEBS Lett 584:3170–3178. https://doi.org/10.1016/j.febslet.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  68. Choi CY, An KW, An MI (2008) Molecular characterization and mRNA expression of glutathione peroxidase and glutathione S-transferase during osmotic stress in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol A Mol Integr Physiol 149:330–337. https://doi.org/10.1016/j.cbpa.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  69. El MS, Guérin P, Ménézo Y (1999) Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod 5:720–725. https://doi.org/10.1093/molehr/5.8.720

    Article  Google Scholar 

  70. Laville M, Auboeuf D, Khalfallah Y et al (1996) Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle. J Clin Invest 98:43–49. https://doi.org/10.1172/JCI118775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Buhl ES, Jessen N, Schmitz O et al (2001) Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes 50:12–17

    Article  CAS  PubMed  Google Scholar 

  72. Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9:2431–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Magnoni LJ, Vraskou Y, Palstra AP et al (2012) AMP-activated protein kinase plays an important evolutionary conserved role in the regulation of glucose metabolism in fish skeletal muscle cells. PLoS ONE 7:e31219. https://doi.org/10.1371/journal.pone.0031219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sahni SK, Turpin LC, Brown TL, Sporn LA (1999) Involvement of protein kinase C in Rickettsia rickettsii-induced transcriptional activation of the host endothelial cell. Infect Immun 67:6418–6423. https://doi.org/10.1128/iai.67.12.6418-6423.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project (RSP-2021/20), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

PKI, RK, AG, PR, JA conceived the study. PR provided the Morin. PKI, RK, AG performed the experiments. PR, MVA, NAA, KCC, RH, JA provided the reagents for the study. All authors designed the experiments, analysed the data, wrote the manuscript, read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jesu Arockia Raj.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All the authors listed in the manuscript have approved the manuscript.

Consent for publication

The data provided in the manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issac, P.K., Karan, R., Guru, A. et al. Insulin signaling pathway assessment by enhancing antioxidant activity due to morin using in vitro rat skeletal muscle L6 myotubes cells. Mol Biol Rep 48, 5857–5872 (2021). https://doi.org/10.1007/s11033-021-06580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06580-x

Keywords

Navigation