Skip to main content
Log in

The Effect of Drying of Glycerol-Plasticized Starch upon Its Dielectric Relaxation Dynamics and Charge Transport

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Carbohydrate polymers are promising materials for an eco-friendly future due to their biodegradability and abundance in nature. However, due to their molecular characteristics and hydrophilicity, are often complicated to be investigated via spectroscopic methods. Thermoplastic starch plasticized by glycerol was prepared through melt processing conditions using twin screw extruder. Here we show how the presence of water molecules affects the dielectric response and charge transport dynamics over broad frequency (10−1 to 107 Hz) and temperature (− 140 to 150 oC) ranges. Overall, 7 dielectric processes were observed and differentiation between electronic and ionic conductivities was achieved. Two segmental relaxation processes were observed for each sample, ascribed to the starch-rich and glycerol-rich phases. Although the timescales of the two segmental relaxations were found different, both arise from the same temperature, giving thus an alternative explanation on what is reported in the literature. The origin of the σ-relaxation was attributed to hydrogen ions and was found to be proportional to the ionic conductivity according to the Barton, Nakajima and Namikawa relation. The presence of water molecules was found to enhance the ionic conductivity, indicating that water contributes charge carriers when compared to the dried sample.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Newell P (2019) Trasformismo or transformation? The global political economy of energy transitions. Rev Int Polit Econ 26:25–48. https://doi.org/10.1080/09692290.2018.1511448

    Article  Google Scholar 

  2. Krauss LM (2021) Physics of climate change. Apollo, New York

    Google Scholar 

  3. Chung Y-L, Ansari S, Estevez L et al (2010) Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydr Polym 79:391–396. https://doi.org/10.1016/j.carbpol.2009.08.021

    Article  CAS  Google Scholar 

  4. Karger-Kocsis J, Kmetty Á, Lendvai L et al (2014) Water-assisted production of thermoplastic nanocomposites: a review. Materials 8:72–95. https://doi.org/10.3390/ma8010072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150. https://doi.org/10.1007/s10924-007-0053-8

    Article  CAS  Google Scholar 

  6. Nocita D, Forte G, Drakopoulos SX et al (2017) Processing and characterization of bio-polyester reactive blends: from thermoplastic blends to cross-linked networks. Polymer 132:252–263. https://doi.org/10.1016/j.polymer.2017.10.069

    Article  CAS  Google Scholar 

  7. Visco A, Nocita D, Giamporcaro A et al (2017) Effect of Ethyl Ester L-Lysine triisocyanate addition to produce reactive PLA/PCL bio-polyester blends for biomedical applications. J Mech Behav Biomed Mater 68:308–317. https://doi.org/10.1016/j.jmbbm.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  8. Loukelis K, Papadogianni D, Chatzinikolaidou M (2022) Kappa-carrageenan/chitosan/gelatin scaffolds enriched with potassium chloride for bone tissue engineering. Int J Biol Macromol 209:1720–1730. https://doi.org/10.1016/j.ijbiomac.2022.04.129

    Article  CAS  PubMed  Google Scholar 

  9. Loukelis K, Helal ZA, Mikos AG, Chatzinikolaidou M (2023) Nanocomposite bioprinting for tissue Engineering Applications. Gels 9:103. https://doi.org/10.3390/gels9020103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strachota B, Strachota A, Šlouf M et al (2019) Monolithic intercalated PNIPAm/starch hydrogels with very fast and extensive one-way volume and swelling responses to temperature and pH: prospective actuators and drug release systems. Soft Matter 15:752–769. https://doi.org/10.1039/C8SM02153H

    Article  CAS  PubMed  Google Scholar 

  11. Peidayesh H, Mosnáčková K, Špitalský Z et al (2021) Thermoplastic starch–based composite reinforced by conductive filler networks: physical properties and electrical conductivity changes during cyclic deformation. Polymers 13:3819. https://doi.org/10.3390/polym13213819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun T, Zhu C, Xu J (2018) Multiple stimuli-responsive selenium-functionalized biodegradable starch-based hydrogels. Soft Matter 14:921–926. https://doi.org/10.1039/C7SM02137B

    Article  CAS  PubMed  Google Scholar 

  13. Cyras VP, Manfredi LB, Ton-That M-T, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63. https://doi.org/10.1016/j.carbpol.2007.11.014

    Article  CAS  Google Scholar 

  14. Soykeabkaew N, Thanomsilp C, Suwantong O (2015) A review: starch-based composite foams. Compos Part A: Appl Sci Manuf 78:246–263. https://doi.org/10.1016/j.compositesa.2015.08.014

    Article  CAS  Google Scholar 

  15. Shi R, Liu Q, Ding T et al (2007) Ageing of soft thermoplastic starch with high glycerol content. J Appl Polym Sci 103:574–586. https://doi.org/10.1002/app.25193

    Article  CAS  Google Scholar 

  16. Lendvai L, Karger-Kocsis J, Kmetty Á, Drakopoulos SX (2016) Production and characterization of microfibrillated cellulose-reinforced thermoplastic starch composites. J Appl Polym Sci 133:42397. https://doi.org/10.1002/app.42397

    Article  CAS  Google Scholar 

  17. Lendvai L, Sajó I, Karger-Kocsis J (2019) Effect of Storage Time on the structure and Mechanical Properties of Starch/Bentonite Nanocomposites. Starch - Stärke 71:1800123. https://doi.org/10.1002/star.201800123

    Article  CAS  Google Scholar 

  18. Baran A, Fričová O, Vrábel P et al (2022) Effects of urea and glycerol mixture on morphology and molecular mobility in thermoplastic starch/montmorillonite-type nanofiller composites studied using XRD and NMR. J Polym Res 29:257. https://doi.org/10.1007/s10965-022-03110-6

    Article  CAS  Google Scholar 

  19. Peidayesh H, Heydari A, Mosnáčková K, Chodák I (2021) In situ dual crosslinking strategy to improve the physico-chemical properties of thermoplastic starch. Carbohydr Polym 269:118250. https://doi.org/10.1016/j.carbpol.2021.118250

    Article  CAS  PubMed  Google Scholar 

  20. Singh T, Gangil B, Patnaik A et al (2019) Agriculture waste reinforced corn starch-based biocomposites: effect of rice husk/walnut shell on physicomechanical, biodegradable and thermal properties. Mater Res Express 6:045702. https://doi.org/10.1088/2053-1591/aafe45

    Article  CAS  Google Scholar 

  21. Müller P, Kapin É, Fekete E (2014) Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films. Carbohydr Polym 113:569–576. https://doi.org/10.1016/j.carbpol.2014.07.054

    Article  CAS  PubMed  Google Scholar 

  22. van Soest JJG, Vliegenthart JFG (1997) Crystallinity in starch plastics: consequences for material properties. Trends Biotechnol 15:208–213. https://doi.org/10.1016/S0167-7799(97)01021-4

    Article  PubMed  Google Scholar 

  23. Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C: Polym Rev 44:231–274. https://doi.org/10.1081/MC-200029326

    Article  CAS  Google Scholar 

  24. Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79:547–554. https://doi.org/10.1016/j.carbpol.2009.09.001

    Article  CAS  Google Scholar 

  25. Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002

    Article  CAS  Google Scholar 

  26. Lendvai L, Apostolov A, Karger-Kocsis J (2017) Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate). Carbohydr Polym 173:566–572. https://doi.org/10.1016/j.carbpol.2017.05.100

    Article  CAS  PubMed  Google Scholar 

  27. Halley PJ, Dorgan JR (2011) Next-generation biopolymers: advanced functionality and improved sustainability. MRS Bull 36:687–691. https://doi.org/10.1557/mrs.2011.180

    Article  CAS  Google Scholar 

  28. Yalpani M (1988) Polysaccharides: syntheses, modifications, and structure/property relations. Elsevier, Amsterdam

    Google Scholar 

  29. Einfeldt J, Meißner D, Kwasniewski A (2001) Polymerdynamics of cellulose and other polysaccharides in solid state-secondary dielectric relaxation processes. Prog Polym Sci 26:1419–1472. https://doi.org/10.1016/S0079-6700(01)00020-X

    Article  CAS  Google Scholar 

  30. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Book  Google Scholar 

  31. Psarras GC (2010) Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai YW (eds) Physical properties and applications of polymer nanocomposites. Elsevier, Amsterdam, pp 31–69

    Chapter  Google Scholar 

  32. Psarras GC (2018) Fundamentals of dielectric theories. In: Dang ZM (ed) Dielectric polymer materials for high-density energy storage. Elsevier, Amsterdam, pp 11–57

    Chapter  Google Scholar 

  33. Klonos PA, Terzopoulou Z, Zamboulis A et al (2022) Direct and indirect effects on molecular mobility in renewable polylactide–poly(propylene adipate) block copolymers as studied via dielectric spectroscopy and calorimetry. Soft Matter 18:3725–3737. https://doi.org/10.1039/D2SM00261B

    Article  CAS  PubMed  Google Scholar 

  34. Šmídová N, Peidayesh H, Baran A et al (2023) Influence of air humidity level on the structure and mechanical properties of thermoplastic starch-montmorillonite nanocomposite during storage. Materials 16:900. https://doi.org/10.3390/ma16030900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33:2027–2037. https://doi.org/10.1023/A:1004398514901

    Article  CAS  Google Scholar 

  36. Gerhardt R (1994) Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 55:1491–1506. https://doi.org/10.1016/0022-3697(94)90575-4

    Article  CAS  Google Scholar 

  37. Drakopoulos SX, Karger-Kocsis J, Kmetty Á et al (2017) Thermoplastic starch modified with microfibrillated cellulose and natural rubber latex: a broadband dielectric spectroscopy study. Carbohydr Polym 157:711–718. https://doi.org/10.1016/j.carbpol.2016.10.036

    Article  CAS  PubMed  Google Scholar 

  38. Anglès MN, Dufresne A (2000) Plasticized Starch/Tunicin whiskers nanocomposites. 1. Struct Anal Macromol 33:8344–8353. https://doi.org/10.1021/ma0008701

    Article  Google Scholar 

  39. Drakopoulos SX, Karger-Kocsis J, Psarras GC (2020) The effect of micro‐fibrillated cellulose upon the dielectric relaxations and DC conductivity in thermoplastic starch bio‐composites. J Appl Polym Sci 137:49573. https://doi.org/10.1002/app.49573

    Article  CAS  Google Scholar 

  40. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210. https://doi.org/10.1016/0032-3861(67)90021-3

    Article  CAS  Google Scholar 

  41. Drakopoulos SX, Patsidis AC, Psarras GC (2022) Epoxy-based/BaTiO3 nanodielectrics: relaxation dynamics, charge transport and energy storage. Mater Res Bull 145:111537. https://doi.org/10.1016/j.materresbull.2021.111537

    Article  CAS  Google Scholar 

  42. Johari GP, Goldstein M (1971) Viscous liquids and the glass transition. III. Secondary relaxations in aliphatic alcohols and other nonrigid molecules. J Chem Phys 55:4245–4252. https://doi.org/10.1063/1.1676742

    Article  CAS  Google Scholar 

  43. Schröter K, Donth E (2000) Viscosity and shear response at the dynamic glass transition of glycerol. J Chem Phys 113:9101–9108. https://doi.org/10.1063/1.1319616

    Article  Google Scholar 

  44. Drakopoulos SX, Karger-Kocsis J, Psarras GC (2019) In situ thermodielectric analysis of the gelatinization mechanism of raw maize starch: an experimental and theoretical approach. J Polym Environ 27:333–342. https://doi.org/10.1007/s10924-018-1348-7

    Article  CAS  Google Scholar 

  45. Mascia L, Kouparitsas Y, Nocita D, Bao X (2020) Antiplasticization of polymer materials: structural aspects and effects on mechanical and diffusion-controlled properties. Polymers 12:769. https://doi.org/10.3390/polym12040769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Forssell PM, Mikkilä JM, Moates GK, Parker R (1997) Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydr Polym 34:275–282. https://doi.org/10.1016/S0144-8617(97)00133-1

    Article  CAS  Google Scholar 

  47. Schmitt H, Guidez A, Prashantha K et al (2015) Studies on the effect of storage time and plasticizers on the structural variations in thermoplastic starch. Carbohydr Polym 115:364–372. https://doi.org/10.1016/j.carbpol.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  48. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146. https://doi.org/10.1063/1.1696442

    Article  CAS  Google Scholar 

  49. Berthier L, Biroli G, Bouchaud J-P et al (2005) Direct experimental evidence of a growing length scale accompanying the Glass Transition. Science 310:1797–1800. https://doi.org/10.1126/science.1120714

    Article  CAS  PubMed  Google Scholar 

  50. Bauer Th, Lunkenheimer P, Loidl A (2013) Cooperativity and the freezing of molecular motion at the glass transition. Phys Rev Lett 111:225702. https://doi.org/10.1103/PhysRevLett.111.225702

    Article  CAS  PubMed  Google Scholar 

  51. Einfeldt J, Meißner D, Kwasniewski A (2003) Contributions to the molecular origin of the dielectric relaxation processes in polysaccharides – the high temperature range. J Non-cryst Solids 320:40–55. https://doi.org/10.1016/S0022-3093(03)00086-3

    Article  CAS  Google Scholar 

  52. Karan N, Pradhan D, Thomas R et al (2008) Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): ionic conductivity and dielectric relaxation. Solid State Ionics 179:689–696. https://doi.org/10.1016/j.ssi.2008.04.034

    Article  CAS  Google Scholar 

  53. Fragiadakis D, Dou S, Colby RH, Runt J (2008) Molecular mobility, Ion mobility, and mobile ion concentration in poly(ethylene oxide)-based polyurethane ionomers. Macromolecules 41:5723–5728. https://doi.org/10.1021/ma800263b

    Article  CAS  Google Scholar 

  54. Serghei A, Tress M, Sangoro JR, Kremer F (2009) Electrode polarization and charge transport at solid interfaces. Phys Rev B 80:184301. https://doi.org/10.1103/PhysRevB.80.184301

    Article  CAS  Google Scholar 

  55. Yang H, Glynos E, Huang B, Green PF (2013) Out-of-plane Carrier Transport in Conjugated Polymer Thin Films: role of morphology. J Phys Chem C 117:9590–9597. https://doi.org/10.1021/jp402254r

    Article  CAS  Google Scholar 

  56. Angell CA (1997) Why C1 = 16–17 in the WLF equation is physical—and the fragility of polymers. Polymer 38:6261–6266

    Article  CAS  Google Scholar 

  57. Wang Y, Fan F, Agapov AL et al (2014) Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer 55:4067–4076. https://doi.org/10.1016/j.polymer.2014.06.085

    Article  CAS  Google Scholar 

  58. Puzenko A, Hayashi Y, Ryabov YE et al (2005) Relaxation dynamics in glycerol – water mixtures: I. glycerol-rich mixtures. J Phys Chem B 109:6031–6035. https://doi.org/10.1021/jp0445122

    Article  CAS  PubMed  Google Scholar 

  59. Capponi S, Napolitano S, Behrnd NR et al (2010) Structural relaxation in nanometer thin layers of glycerol. J Phys Chem C 114:16696–16699. https://doi.org/10.1021/jp108151p

    Article  CAS  Google Scholar 

  60. Pipertzis A, Papamokos G, Mühlinghaus M et al (2020) What determines the glass temperature and dc-conductivity in imidazolium-polymerized ionic liquids with a polythiophene backbone? Macromolecules 53:3535–3550. https://doi.org/10.1021/acs.macromol.0c00226

    Article  CAS  Google Scholar 

  61. Namikawa H (1975) Characterization of the diffusion process in oxide glasses based on the correlation between electric conduction and dielectric relaxation. J Non-cryst Solids 18:173–195. https://doi.org/10.1016/0022-3093(75)90019-8

    Article  CAS  Google Scholar 

  62. Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64:2456–2468. https://doi.org/10.1063/1.341681

    Article  Google Scholar 

  63. Dyre JC, Schrøder TB (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72:873–892. https://doi.org/10.1103/RevModPhys.72.873

    Article  Google Scholar 

  64. Zardalidis G, Ioannou E, Pispas S, Floudas G (2013) Relating structure, viscoelasticity, and local mobility to Conductivity in PEO/LiTf electrolytes. Macromolecules 46:2705–2714. https://doi.org/10.1021/ma400266w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank professor Dr. Ivan Chodák (Slovak Academy of Sciences, Slovakia) for valuable discussions over TPS-based materials and for reading and providing with constructive comments about the manuscript prior to submission.

Funding

H.P. would like to acknowledge financial help from The Slovak Grant Agency under the project number VEGA 2/0109/23.

Author information

Authors and Affiliations

Authors

Contributions

SXD: Conceptualization, Methodology, Formal analysis, Data curation, Writing—original draft, Writing—review & editing, Visualization, Supervision. ZŠ: Methodology, Validation, Investigation, Resources, Writing—review & editing. HP: Methodology, Validation, Investigation, Writing—review & editing. LL: Conceptualization, Methodology, Investigation, Writing—review & editing, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Stavros X. Drakopoulos or László Lendvai.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drakopoulos, S.X., Špitalský, Z., Peidayesh, H. et al. The Effect of Drying of Glycerol-Plasticized Starch upon Its Dielectric Relaxation Dynamics and Charge Transport. J Polym Environ 31, 5389–5400 (2023). https://doi.org/10.1007/s10924-023-02962-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02962-3

Keywords

Navigation