Skip to main content
Log in

MB11N12 (M = Fe–Zn) Nanocages for Cyanogen Chloride Detection: A DFT Study

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The development of sensors for hazardous gases based on metal-modified B12N12 nanocages has attracted the attention of researchers. In this theoretical study, the interactions of cyanogen chloride (CNCl) toxic gas with pristine and MB11N12 (M = Fe, Co, Ni, Cu, and Zn) nanocages were evaluated using density functional theory (DFT) at the B97-3c/6-31G(d,p) level for all of the studied systems. The results indicated a decrease in the energy band gap (Egap) after doping and that this effect was more pronounced for the CuB11N12 nanocage. The CNCl molecule was observed to chemically adsorb on all MB11N12 nanocages, but a stronger interaction occurred on the FeB11N12, and CoB11N12 nanocages (with high recovery times), with a moderate interaction occurring on the B12N12, NiB11N12, CuB11N12, and ZnB11N12 surfaces (with adequate recovery times and σ-donation being more effective than π-back-bonding). However, the NiB11N12 and CuB11N12 nanocages showed the highest electronic sensitivity (∆Egap) values (79.31% and 87.50%, respectively) for the adsorption of CNCl gas. Furthermore, based on performance analysis and comparison with previous results reported in the literature, it was found that NiB11N12 and CuB11N12 nanocages were superior sensor materials for application in the detection of CNCl toxic gas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.D. Mohammadi, H.Y. Abdullah, G. Biskos, S. Bhowmick, Adsorbing CNCl on pristine, C-, and Al-doped boron nitride nanotubes: a density functional theory study. Comput. Theor. Chem. 1220, 113980 (2023)

    Article  Google Scholar 

  2. A. Soltani, M. Ramezanitaghartapeh, M.B. Javan, M.T. Baei, A.N.K. Lup, P.J. Mahon, M. Aghaei, Influence of the adsorption of toxic agents on the optical and electronic properties of B12N12 fullerene in the presence and absence of an external electric field. New J. Chem. 44, 14513–14528 (2020)

    Article  CAS  Google Scholar 

  3. S. Ding, W. Gu, Evaluate the potential utilization of B24N24 fullerene in the recognition of COS, H2S, SO2, and CS2 gases (environmental pollution). J. Mol. Liq. 345, 117041 (2022)

    Article  CAS  Google Scholar 

  4. N.H. Raad, N. Manavizadeh, I. Frank, E. Nadimi, Gas sensing properties of a two-dimensional graphene/h-BN multi-heterostructure toward H2O, NH3 and NO2: a first principles study. Appl. Surf. Sci. 565, 150454 (2021)

    Article  Google Scholar 

  5. S. Patel, P. Patel, D. Chodvadiya, N.N. Som, P.K. Jha, Adsorption performance of C12, B6N6 and Al6N6 nanoclusters towards hazardous gas molecules: a DFT investigation for gas sensing and removal application. J. Mol. Liq. 352, 118702 (2022)

    Article  CAS  Google Scholar 

  6. A.L.P. Silva, N.S. Sousa, J.J.G. Varela Júnior, Theoretical studies with B12N12 as a toxic gas sensor: a review. J. Nanopart. Res. 25, 22 (2023)

    Article  CAS  Google Scholar 

  7. A.L.P. Silva, J.J.G. Varela Júnior, Density functional theory study of Cu-modified B12N12 nanocage as a chemical sensor for carbon monoxide gas. Inorg. Chem. 62, 1926–1934 (2023)

    Article  Google Scholar 

  8. H.Y. Ammar, H.M. Badran, Kh.M. Eid, TM-doped B12N12 nano-cage (TM = Mn, Fe) as a sensor for CO, NO, and NH3 gases: A DFT and TD-DFT study. Mater. Today Commun. 25, 101681 (2020)

    Article  CAS  Google Scholar 

  9. E. Shakerzadeh, E. Khodayar, S. Noorizadeh, Theoretical assessment of phosgene adsorption behavior onto pristine, Al- and Ga-doped B12N12 and B16N16 nanoclusters. Comput. Mater. Sci. 118, 155–171 (2016)

    Article  CAS  Google Scholar 

  10. S. Larki, E. Shakerzadeh, E.C. Anota, R. Behjatmanesh-Ardakani, The Al, Ga and Sc dopants effect on the adsorption performance of B12N12 nanocluster toward pnictogen hydrides. Chem. Phys. 526, 110424 (2019)

    Article  CAS  Google Scholar 

  11. H.G. Rauf, E.A. Mahmood, S. Majedi, M. Sofi, Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): a comparative study. Chem. Rev. Lett. 2, 140–150 (2019)

    Google Scholar 

  12. A.L.P. Silva, A.C.A. Silva, J.J.G. Varela Júnior, Putrescine adsorption on pristine and Cu-decorated B12N12 nanocages: a density functional theory study. Comput. Theor. Chem. 1215, 113836 (2022)

    Article  CAS  Google Scholar 

  13. D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 73, 2441–2443 (1998)

    Article  CAS  Google Scholar 

  14. Y.-C. Zhu, Y. Bando, L.-W. Yin, D. Golberg, Hollow boron nitride (BN) nanocages and BN-nanocage-encapsulated nanocrystals. Chem. Eur. J. 10, 3667–3672 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. T. Oku, A. Nishiwaki, I. Narita, Formation and structure of B28N28 clusters studied by mass spectrometry and molecular orbital calculation. Solid State Commun. 130, 171–173 (2004)

    Article  CAS  Google Scholar 

  16. T. Oku, A. Nishiwaki, I. Narita, Formation and structures of B36N36 and Y@B36N36 clusters studied by high-resolution electron microscopy and mass spectrometry. J. Phys. Chem. Solids. 65, 369–372 (2004)

    Article  CAS  Google Scholar 

  17. T. Oku, Hydrogen storage in boron nitride and carbon nanomaterials. Energies 8, 319–337 (2015)

    Article  CAS  Google Scholar 

  18. A.N. Enyashin, Theoretical studies of inorganic fullerenes and fullerene-like nanoparticles. Isr. J. Chem. 50, 468–483 (2010)

    Article  CAS  Google Scholar 

  19. A. Soltani, M.B. Javan, Carbon monoxide interactions with pure and doped B11XN12 (X = Mg, Ge, Ga) nano-cluster: a theoretical study. RSC Adv. 5, 90621–90631 (2015)

    Article  CAS  Google Scholar 

  20. X. Yang, L. Lan, Z. Zhao, S. Zhou, K. Kang, H. Song, S. Bai, A review on cyanide gas elimination methods and materials. Molecules 27, 7125 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. R. Jain, S. Kumar, Hazardous Gases, in Risk Assessment on Environment and Human Health. ed. by J. Singh, M. Chawla, R.D. Kaushik (Academic Press, Cambridge, 2021), pp.127–139

    Google Scholar 

  22. E. Jaszczak, Z. Polkowska, S. Narkowicz, J. Namieśnik, Cyanides in the environment–analysis–problems and challenges. Environ. Sci. Pollut. Res. Int. 24, 15929–15948 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C.E. Cooper, G.C. Brown, The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J. Bioenerg. Biomembr. 40, 533–539 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. H. Salem, A.L. Ternay Jr., J.K. Smart, Chemical Warfare Agents, in Chemistry, Pharmacology, Toxicology, and Therapeutics. ed. by B.J. Lukey, J.A. Romano Jr., H. Salem (Academic, San Diego, 2008), pp.1–20

    Google Scholar 

  25. S. Chauhan, S. Chauhan, R.D. Cruz, S. Faruqi, K.K. Singh, S. Varma, M. Singh, V. Karthik, Chemical warfare agents. Environ. Toxicol. Pharmacol. 26, 113–122 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. K. Ganesan, S.K. Raza, R. Vijayaraghavan, Chemical warfare agents. J. Pharm. Bioallied Sci. 2, 166–178 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Xie, D.A. Recklow, A rapid and simple analytical method for cyanogen chloride and cyanogen bromide in drinking water. Wat. Res. 27, 507–511 (1993)

    Article  CAS  Google Scholar 

  28. B. Cancho, F. Ventura, M.T. Galceran, Simultaneous determination of cyanogen chloride and cyanogen bromide in treated water at sub-μg/L levels by a new solid-phase microextraction–gas chromatographic–electron-capture detection method. J. Chromatogr. A. 897, 307–315 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. E. Vessally, F. Behmagham, B. Massuomi, A. Hosseinian, K. Nejati, Selective detection of cyanogen halides by BN nanocluster: a DFT study. J. Mol. Model. 23, 138 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. F. Azimi, E. Tazikeh-Lemeski, Exploring adsorption behavior of cyanogen chloride molecule on boron nitride nanocluster from first-principles. Russ. J. Phys. Chem. A 94, 2141–2147 (2020)

    Article  Google Scholar 

  31. H. Farrokhpour, H. Jouypazadeh, S.V. Sohroforouzani, Interaction of different types of nanocages (Al12N12, Al12P12, B12N12, Be12O12, Mg12O12, Si12C12 and C24) with HCN and ClCN: DFT, TD-DFT, QTAIM, and NBO calculations. Mol. Phys. 118, e1626506 (2020)

    Article  Google Scholar 

  32. A.L.P. Silva, J.J.G. Varela Júnior, Carbon monoxide interaction with B12N12 nanocage with and without an external electric field: a DFT study. J. Nanopart. Res. 24, 1 (2022)

    Article  CAS  Google Scholar 

  33. A.L.P. Silva, A.C.A. Silva, C.N. Navis, J.J.G. Varela Júnior, Theoretical study of putrescine and X12Y12 (X=Al, B and Y=N, P) nanocage interactions. J. Nanopart. Res. 23, 108 (2021)

    Article  CAS  Google Scholar 

  34. S. Kaviani, S. Shahab, M. Sheikhi, Adsorption of alprazolam drug on the B12N12 and Al12N12 nanocages for biological applications: a DFT study. Physica E Low. Dimens. Syst. Nanostruct. 126, 114473 (2021)

    Article  CAS  Google Scholar 

  35. S.U.D. Shamim, M.H. Miah, M.R. Hossain, M.M. Hasan, M.K. Hossain, M.A. Hossain, F. Ahmed, Theoretical investigation of emodin conjugated doped B12N12 nanocage by means of DFT, QTAIM and PCM analysis. Physica E Low. Dimens. Syst. Nanostruct. 136, 115027 (2022)

    Article  CAS  Google Scholar 

  36. H.Y. Ammar, Kh.M. Eid, H.M. Badran, Interaction and detection of formaldehyde on pristine and doped boron nitride nano-cage: DFT calculations. Mater. Today Commun. 25, 101408 (2020)

    Article  CAS  Google Scholar 

  37. S. Hussain, R. Hussain, M.Y. Mehboob, S.A.S. Chatha, A.I. Hussain, A. Umar, M.U. Khan, M. Ahmed, M. Adnan, K. Ayub, Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: a comparative DFT study. ACS Omega 5, 7641–7650 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Kaviani, M. Izadyar, ZIF-8 metal-organic framework conjugated to pristine and doped B12N12 nanoclusters as a new hybrid nanomaterial for detection of amphetamine. Inorg. Chem. Commun. 135, 109119 (2022)

    Article  CAS  Google Scholar 

  39. R. Alvand, M. Rezaei-Sameti, The H+ ions and static electric field effects on the adsorption and detection of cyanogen fluoride on the surface of boron nitride nanocage: a DFT, TD-DFT study. Adsorption 27, 91–104 (2021)

    Article  CAS  Google Scholar 

  40. R. Padash, M. Rahimi-Nasrabadi, A.S. Rad, A. Sobhani-Nasab, T. Jesionowski, H. Ehrlich, A comparative computational investigation of phosgene adsorption on (XY)12 (X = Al, B and Y = N, P) nanoclusters: DFT investigations. J. Clust. Sci. 30, 203–218 (2019)

    Article  CAS  Google Scholar 

  41. R. Bhuvaneswari, V. Nagarajan, R. Chandiramouli, Exploring adsorption mechanism of hydrogen cyanide and cyanogen chloride molecules on arsenene nanoribbon from first-principles. J. Mol. Graph. Model. 89, 13–21 (2019)

    Article  CAS  PubMed  Google Scholar 

  42. A. Soltani, M.T. Baei, A.S. Ghasemi, E.T. Lemeski, K.H. Amirabadi, Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes. Superlattices Microstruct. 75, 564–575 (2014)

    Article  CAS  Google Scholar 

  43. T. Movlarooy, M.A. Fadradi, Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing. Chem. Phys. Lett. 700, 7–14 (2018)

    Article  CAS  Google Scholar 

  44. P. Snehha, V. Nagarajan, R. Chandiramouli, Interaction behavior of cyanogen fluoride and chloride gas molecules on red phosphorene nanosheet: a DFT study. J. Inorg. Organomet. Polym. Mater. 29, 954–963 (2019)

    Article  CAS  Google Scholar 

  45. P. Zhu, F. Tang, S. Wang, W. Cao, Q. Wang, Adsorption performance of CNCl, NH3 and GB on modified graphene and the selectivity in O2 and N2 environment. Mater. Today Commun. 33, 104280 (2022)

    Article  CAS  Google Scholar 

  46. M.S. Jyothi, V. Nagarajan, R. Chandiramouli, Investigation on adsorption properties of HCN and ClCN blood agents on θ–phosphorene nanosheets – a first–principles insight. Chem. Phys. 538, 110896 (2020)

    Article  CAS  Google Scholar 

  47. M. Rouhani, DFT study on adsorbing and detecting possibility of cyanogen chloride by pristine, B, Al, Ga, Si and Ge doped graphene. J. Mol. Struct. 1181, 518–535 (2019)

    Article  CAS  Google Scholar 

  48. P. Pakravan, S.A. Siadati, The possibility of using C20 fullerene and graphene as semiconductor segments for detection, and destruction of cyanogen-chloride chemical agent. J. Mol. Graph. Model. 75, 80–84 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. E. Vessally, R. Moladoust, S.M. Mousavi-Khoshdel, M.D. Esrafili, A. Hosseinian, L. Edjlali, The ClCN adsorption on the pristine and Al-doped boron nitride nanosheet, nanocage, and nanocone: density functional studies. Thin Solid Films 645, 363–369 (2018)

    Article  CAS  Google Scholar 

  50. F. Neese, The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2012)

    Article  CAS  Google Scholar 

  51. F. Neese, Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018)

    Article  Google Scholar 

  52. F. Neese, Software update: the ORCA program system–version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022)

    Article  Google Scholar 

  53. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  PubMed  Google Scholar 

  54. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. J.G. Brandenburg, C. Bannwarth, A. Hansen, S. Grimme, B97–3c: a revised low-cost variant of the B97-D density functional method. J. Chem. Phys. 148, 064104 (2018)

    Article  PubMed  Google Scholar 

  56. J. Zhang, T. Lu, Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 23, 20323–20328 (2021)

    Article  CAS  PubMed  Google Scholar 

  57. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 29, 580–592 (2012)

    Article  Google Scholar 

  58. F. Jensen, H. Toftlund, Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett. 201, 89–96 (1993)

    Article  CAS  Google Scholar 

  59. T. Oku, A. Nishiwaki, I. Narita, Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci. Technol. Adv. Mater. 5, 635–645 (2004)

    Article  CAS  Google Scholar 

  60. A. Escobedo-Morales, L. Tepech-Carrillo, A. Bautista-Hernández, J.H. Camacho-García, D. Cortes-Arriagada, E. Chigo-Anota, Effect of chemical order in the structural stability and physicochemical properties of B12N12 fullerenes. Sci. Rep. 9, 16521 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  61. T. Sutradhar, A. Misra, Theoretical study on the nonlinear optical property of boron nitride nanoclusters functionalized by electron donating and electron accepting groups. J. Phys. Chem. A 125, 2436–2445 (2021)

    Article  CAS  PubMed  Google Scholar 

  62. D.C. Ghosh, R. Biswas, Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii. Int. J. Mol. Sci. 3, 87–113 (2002)

    Article  CAS  Google Scholar 

  63. S. Peng, K. Cho, P. Qi, H. Dai, Ab initio study of CNT NO2 gas sensor. Chem. Phys. Lett. 387, 271 (2004)

    Article  CAS  Google Scholar 

  64. T. Kaewmaraya, L. Ngamwongwan, P. Moontragoon, W. Jarernboon, D. Singh, R. Ahuja, A. Karton, T. Hussain, Novel green phosphorene as a superior chemical gas sensing material. J. Hazard. Mater. 401, 123340 (2021)

    Article  CAS  PubMed  Google Scholar 

  65. Y. Yong, H. Jiang, X. Li, S. Lv, J. Cao, The cluster-assembled nanowires based on M12N12 (M = Al and Ga) clusters as potential gas sensors for CO, NO, and NO2 detection. Phys. Chem. Chem. Phys. 18, 21431–21441 (2016)

    Article  CAS  PubMed  Google Scholar 

  66. G. Fan, X. Wang, X. Tu, H. Xu, Q. Wang, X. Chu, Density functional theory study of Cu-doped BNNT as highly sensitive and selective gas sensor for carbon monoxide. Nanotechnology 32, 075502 (2021)

    Article  CAS  PubMed  Google Scholar 

  67. A.L.P. Silva, L.F. Almeida, A.L.B. Marques, J.J.G. Varela Júnior, A.A. Tanaka, A.B.F. Silva, CO bonding in FeN4 complexes and the effect of the macrocycle ligand: a DFT study. Polyhedron 67, 36–43 (2014)

    Article  CAS  Google Scholar 

  68. A.L.P. Silva, L.F. Almeida, A.L.B. Marques, H.R. Costa, A.A. Tanaka, A.B.F. Silva, J.J.G. Varela Júnior, Quantum chemical DFT study of the interaction between molecular oxygen and FeN4 complexes, and effect of the macrocyclic ligand. J. Mol. Model. 20, 2131 (2014)

    Article  PubMed  Google Scholar 

  69. A.J. Bridgeman, G. Cavigliasso, L.R. Ireland, J. Rothery, The Mayer bond order as a tool in inorganic chemistry. Dalton Trans. 14, 2095–2108 (2001)

    Article  Google Scholar 

  70. S.S. Li, Semiconductor Physical Electronics, in Classification of Solids and Crystal Structure. ed. by S.S. Li (Springer, New York, 2007), pp.211–245

    Google Scholar 

  71. A.M. Pineda-Reyes, M.R. Herrera-Rivera, H. Rojas-Chávez, H. Cruz-Martínez, D.I. Medina, Recent advances in ZnO-based carbon monoxide sensors: role of doping. Sensors 21, 4425 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. H. Cui, X. Zhang, G. Zhang, J. Tang, Pd-doped MoS2 monolayer: a promising candidate for DGA in transformer oil based on DFT method. Appl. Surf. Sci. 470, 1035–1042 (2019)

    Article  CAS  Google Scholar 

  73. S. Mondal, S.R. Bhattacharyya, P. Mitra, Effect of Al doping on microstructure and optical band gap of ZnO thin film synthesized by successive ion layer adsorption and reaction. Pramana - J. Phys. 80, 315–326 (2013)

    Article  CAS  Google Scholar 

  74. N.L. Hadipour, A.A. Peyghan, H. Soleymanabadi, Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem. C 119, 6398–6404 (2015)

    Article  CAS  Google Scholar 

  75. G. Korotcenkov, Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications Volume 1: Conventional Approaches, in Sensing Layers in Work-Function-Type Gas Sensors. ed. by G. Korotcenkov (Springer, New York, 2013), pp.377–388

    Google Scholar 

  76. S. Dushman, Electron emission from metals as a function of temperature. Phys. Rev. 21, 623–636 (1923)

    Article  CAS  Google Scholar 

  77. K. Potje-Kamloth, Semiconductor junction gas sensors. Chem. Rev. 1008, 367–399 (2008)

    Article  Google Scholar 

  78. R. Hossain, M. Hasan, M. Nishat, Noor-E-Ashrafi, F. Ahmed, T. Ferdous, A. Hossain, DFT and QTAIM investigations of the adsorption of chlormethine anticancer drug on the exterior surface of pristine and transition metal functionalized boron nitride fullerene. J. Mol. Liq. 323, 114627 (2021)

    Article  CAS  Google Scholar 

  79. S. Bashiri, E. Vessally, A. Bekhradnia, A. Hosseinian, L. Edjlali, Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies. Vacuum 136, 156–162 (2017)

    Article  CAS  Google Scholar 

  80. A.L. Smith, R. Breitwieser, Richardson-Dushman equation monograph. J. Appl. Phys. 41, 436–437 (1970)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES − Grant No. 88887.472618/2019–00-PROCAD-AM).

Funding

This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 88887.472618/2019–00-PROCAD-AM.

Author information

Authors and Affiliations

Authors

Contributions

ALPS: Methodology, Data curation, Investigation, Formal analysis, Writing—original draft. JJGVJ: Conceptualization, Supervision, Resources, Funding acquisition, Writing—review & editing.

Corresponding author

Correspondence to Jaldyr de Jesus Gomes Varela Júnior.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1293 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.L.P., Varela Júnior, J.J.G. MB11N12 (M = Fe–Zn) Nanocages for Cyanogen Chloride Detection: A DFT Study. J Inorg Organomet Polym 34, 302–312 (2024). https://doi.org/10.1007/s10904-023-02824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02824-4

Keywords

Navigation