Skip to main content

Advertisement

Log in

Towards Green Synthesis of Fluorescent Metal Nanoclusters

  • REVIEW
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the modern development of nanoscience and nanotechnology, metal nanoclusters have emerged as a foremost category of nanomaterials exhibiting remarkable biocompatibility and photo-stability having dramatically distinctive optical, electronic, and chemical properties. This review focuses on synthesizing fluorescent metal nanoclusters in a greener way to make them suitable for biological imaging and drug delivery application. The green methodology is the desired route for sustainable chemical production and should be utilized for any form of chemical synthesis including nanomaterials. It aims to eliminate harmful waste, uses non-toxic solvents, and employs energy-efficient processes for the synthesis. This article provides an overview of conventional synthesis methods, including stabilizing nanoclusters by small organic molecules in organic solvents. Then we focus on the improvement of properties, applications of green synthesized metal nanoclusters, challenges involved, and further advancement required in the direction of green synthesis of MNCs. There are plenty of problems for scientists to solve to make nanoclusters suitable for bio-applications, chemical sensing, and catalysis synthesized by green methods. Using bio-compatible and electron-rich ligands, understanding ligand–metal interfacial interactions, employing more energy-efficient processes, and utilizing bio-inspired templates for synthesis are some immediate problems worth solving in this field that requires continued efforts and interdisciplinary knowledge and collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1 
Scheme 2
Fig. 2

© American Chemical Society 2012)

Fig. 3

© American Chemical Society 2011)

Fig. 4

© John Wiley & Son 2016)

Fig. 5

© American Chemical Society 2008)

Fig. 6

© SPIE 2016)

Fig. 7

© American Chemical Society 2012)

Fig. 8

© American Chemical Society 2003)

Fig. 9

© MDPI 2022)

Fig. 10

© MDPI 2018)

Fig. 11

© American Chemical Society 2018)

Fig. 12
Fig. 13

© American Chemical Society 2017)

Similar content being viewed by others

Data Availability

This is a review article, therefore, this does not contain any data. Permission has been taken to incorporate figures from published articles.

References

  1. Zhang L, Wang E (2014) Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 9:132–157. https://doi.org/10.1016/j.nantod.2014.02.010

    Article  CAS  Google Scholar 

  2. Mu J, Yang J-L, Zhang D-W, Qiong J (2021) Progress in preparation of metal nanoclusters and their application in detection of environmental pollutants. Chin J Anal Chem 49:319–329. https://doi.org/10.1016/S1872-2040(21)60082-8

    Article  CAS  Google Scholar 

  3. Yu H, Rao B, Jiang W et al (2019) The photoluminescent metal nanoclusters with atomic precision. Coord Chem Rev 378:595–617. https://doi.org/10.1016/j.ccr.2017.12.005

    Article  CAS  Google Scholar 

  4. Zheng Y, Lai L, Liu W et al (2017) Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv Coll Interface Sci 242:1–16. https://doi.org/10.1016/j.cis.2017.02.005

  5. Das NK, Mukherjee S (2019) Size-controlled atomically precise copper nanoclusters: Synthetic protocols, spectroscopic properties and applications. Phys Sci Rev 3:1–22. https://doi.org/10.1515/psr-2017-0081

    Article  Google Scholar 

  6. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145:83–96. https://doi.org/10.1016/j.cis.2008.09.002

    Article  CAS  Google Scholar 

  7. Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343–362. https://doi.org/10.1039/b9nr00160c

    Article  CAS  PubMed  Google Scholar 

  8. Li D, Kumari B, Zhang X et al (2019) Purification and separation of ultra-small metal nanoclusters. Adv Coll Interface Sci 276:102090. https://doi.org/10.1016/j.cis.2019.102090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu S, Lu F, Zhu JJ (2011) Highly fluorescent Ag nanoclusters: Microwave-assisted green synthesis and Cr3+ sensing. Chem Commun 47:2661–2663. https://doi.org/10.1039/c0cc04276e

    Article  CAS  Google Scholar 

  10. Richards CI, Choi S, Hsiang JC et al (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039. https://doi.org/10.1021/ja8005644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lopes RCFG, Rocha BGM, Maçôas EMS et al (2022) Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Adv Coll Interface Sci 304:102667. https://www.sciencedirect.com/science/article/pii/S0001868622000690

  12. Xavier PL, Chaudhari K, Baksi A, Pradeep T (2012) Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. Nano Rev 3:14767. https://doi.org/10.3402/nano.v3i0.14767

    Article  CAS  Google Scholar 

  13. Ishida Y, Corpuz RD, Yonezawa T (2017) Matrix sputtering method: A novel physical approach for photoluminescent noble metal nanoclusters. Acc Chem Res 50:2986–2995. https://doi.org/10.1021/acs.accounts.7b00470

    Article  CAS  PubMed  Google Scholar 

  14. Su Y, Xue T, Liu Y et al (2019) Luminescent metal nanoclusters for biomedical applications. Nano Res 12:1251–1265. https://doi.org/10.1007/s12274-019-2314-y

    Article  CAS  Google Scholar 

  15. Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–2573. https://doi.org/10.1021/nl101225f|

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Zhu JJ, Xu K (2014) Fluorescent metal nanoclusters: From synthesis to applications. TrAC - Trends Anal Chem 58:90–98. https://doi.org/10.1016/j.trac.2014.02.011

    Article  CAS  Google Scholar 

  17. Chakraborty S, Mukherjee S (2022) Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chem Commun 58:29–47. https://doi.org/10.1039/D1CC05396E

    Article  CAS  Google Scholar 

  18. Zhou R, Shi M, Chen X et al (2009) Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized gold particles and rods. Chem Eur J 15:4944–4951. https://doi.org/10.1002/chem.200802743

    Article  CAS  PubMed  Google Scholar 

  19. Ou G, Zhao J, Chen P et al (2018) Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions. Anal Bioanal Chem 410:2485–2498. https://doi.org/10.1007/s00216-017-0808-6

    Article  CAS  PubMed  Google Scholar 

  20. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261–5270. https://doi.org/10.1021/ja042218h

    Article  CAS  PubMed  Google Scholar 

  21. Konishi K (2014) Phosphine-coordinated pure-gold clusters: Diverse geometrical structures and unique optical properties/responses. Struct Bond 161:49–86. https://doi.org/10.1007/430_2014_143

    Article  Google Scholar 

  22. Negishi Y, Kurashige W, Kamimura U (2011) Isolation and structural characterization of an octaneselenolate-protected Au25 cluster. Langmuir 27:12289–12292. https://doi.org/10.1021/la203301p

    Article  CAS  PubMed  Google Scholar 

  23. Lei Z, Wan X-K, Yuan S-F et al (2018) Alkynyl approach toward the protection of metal nanoclusters. Acc Chem Res 51:2465–2474. https://doi.org/10.1021/acs.accounts.8b00359

    Article  CAS  PubMed  Google Scholar 

  24. Ding W, Liu Y, Li Y et al (2014) Water-soluble gold nanoclusters with pH-dependent fluorescence and high colloidal stability over a wide pH range via co-reduction of glutathione and citrate. RSC Adv 4:22651–22659. https://doi.org/10.1039/c4ra03363a

    Article  CAS  Google Scholar 

  25. Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346–10413. https://doi.org/10.1021/acs.chemrev.5b00703

    Article  CAS  PubMed  Google Scholar 

  26. Cook AW, Hayton TW (2018) Case studies in nanocluster synthesis and characterization: challenges and opportunities. Acc Chem Res 51:2456–2464. https://doi.org/10.1021/acs.accounts.8b00329

    Article  CAS  PubMed  Google Scholar 

  27. Wilcoxon JP, Abrams BL (2006) Synthesis, structure and properties of metal nanoclusters. Chem Soc Rev 35:1162–1194. https://doi.org/10.1039/b517312b

    Article  CAS  PubMed  Google Scholar 

  28. Borse S, Murthy ZVP, Park TJ, Kailasa SK (2021) Pepsin mediated synthesis of blue fluorescent copper nanoclusters for sensing of flutamide and chloramphenicol drugs. Microchem J 164:105947. https://doi.org/10.1016/j.microc.2021.105947

    Article  CAS  Google Scholar 

  29. Liu J, Zhang QM, Feng Y et al (2016) Solvent-switching gelation and orange-red emission of ultrasmall copper nanoclusters. ChemPhysChem 17:225–231. https://doi.org/10.1002/cphc.201500969

    Article  CAS  PubMed  Google Scholar 

  30. Shang L, Dong S, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6:401–418. https://doi.org/10.1016/j.nantod.2011.06.004

    Article  CAS  Google Scholar 

  31. Sayadi K, Akbarzadeh F, Pourmardan V et al (2021) Methods of green synthesis of Au NCs with emphasis on their morphology: A mini-review. Heliyon 7:e07250. https://doi.org/10.1016/j.heliyon.2021.e07250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ivanković A (2017) Review of 12 principles of green chemistry in practice. Int J Sustain Green Energy 6:39–48. https://doi.org/10.11648/j.ijrse.20170603.12

    Article  CAS  Google Scholar 

  33. Aparna RS, Anjali AD, John N et al (2018) Blue emitting copper nanoclusters as a colorimetric and fluorescent probe for the selective detection of bilirubin. Spectrochim Acta - Part A: Mol Biomol Spectrosc 199:123–129. https://doi.org/10.1016/j.saa.2018.03.045

    Article  CAS  Google Scholar 

  34. Chakraborty S, Nandy A, Ghosh S et al (2021) Protein-Templated gold nanoclusters as specific bio-imaging probes for the detection of Hg(ii) ions in: In vivo and in vitro systems: Discriminating between MDA-MB-231 and MCF10A cells. Analyst 146:1455–1463. https://doi.org/10.1039/d0an02108c

  35. Kumar Das N, Chakraborty S, Mukherjee M, Mukherjee S (2018) Enhanced Luminescent Properties of Photo-Stable Copper Nanoclusters through Formation of “Protein-Corona”-Like Assemblies. ChemPhysChem 19:2218–2223. https://doi.org/10.1002/cphc.201800332

    Article  CAS  PubMed  Google Scholar 

  36. Qiao Y, Xu T, Zhang Y et al (2015) Green synthesis of fluorescent copper nanoclusters for reversible pH-sensors. Sens Actuators, B Chem 220:1064–1069. https://doi.org/10.1016/j.snb.2015.06

    Article  CAS  Google Scholar 

  37. Wang Y, Chen JT, Yan XP (2013) Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal Chem 85:2529–2535. https://doi.org/10.1021/ac303747t

    Article  CAS  PubMed  Google Scholar 

  38. Goswami U, Dutta A, Raza A et al (2018) Transferrin-Copper Nanocluster-Doxorubicin Nanoparticles as Targeted Theranostic Cancer Nanodrug. ACS Appl Mater Interfaces 10:3282–3294. https://doi.org/10.1021/acsami.7b15165

    Article  CAS  PubMed  Google Scholar 

  39. Chen P-F, Liu C-L, Lin W-K et al (2015) Fluorescence depletion properties of insulin–gold nanoclusters. Biomed Opt Express 6:3066–3073. https://doi.org/10.1364/BOE.6.003066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mi W, Tang S, Jin Y, Shao N (2021) Au/Ag Bimetallic nanoclusters stabilized by glutathione and lysozyme for ratiometric sensing of H2O2 and hydroxyl radicals. ACS Appl Nano Mater 4:1586–1595. https://doi.org/10.1021/acsanm.0c03053

    Article  CAS  Google Scholar 

  41. Bhamore JR, Jha S, Singhal RK et al (2019) Amylase protected gold nanoclusters as chemo- and bio- sensor for nanomolar detection of deltamethrin and glutathione. Sens Actuators, B Chem 281:812–820. https://doi.org/10.1016/j.snb.2018.11.001

    Article  CAS  Google Scholar 

  42. Peng Y, Wang P, Luo L et al (2018) Green synthesis of fluorescent palladium nanoclusters. Materials 11:1–10. https://doi.org/10.3390/ma11020191

    Article  CAS  Google Scholar 

  43. Naaz S, Chowdhury P (2017) Sunlight and ultrasound-assisted synthesis of photoluminescent silver nanoclusters: A unique ‘Knock out’ sensor for thiophilic metal ions. Sens Actuators, B Chem 241:840–848. https://doi.org/10.1016/j.snb.2016.10.116

    Article  CAS  Google Scholar 

  44. Ghotekar S (2019) A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J Green Chem 3:187–200. https://doi.org/10.22034/ajgc.2018.140313.1084

    Article  CAS  Google Scholar 

  45. Kumar S, Jin R (2012) Water-soluble Au25(Capt)18 nanoclusters: Synthesis, thermal stability, and optical properties. Nanoscale 4:4222–4227. https://doi.org/10.1039/c2nr30833a

    Article  CAS  PubMed  Google Scholar 

  46. Yu M, Zhu Z, Wang H et al (2017) Antibiotics mediated facile one-pot synthesis of gold nanoclusters as fluorescent sensor for ferric ions. Biosens Bioelectron 91:143–148. https://doi.org/10.1016/j.bios.2016.11.052

    Article  CAS  PubMed  Google Scholar 

  47. Chen T, Luo Z, Yao Q et al (2016) Synthesis of thiolate-protected Au nanoparticles revisited: U-shape trend between the size of nanoparticles and thiol-to-Au ratio. Chem Commun 52:9522–9525. https://doi.org/10.1039/C6CC04433F

    Article  CAS  Google Scholar 

  48. Luo Z, Yuan X, Yu Y et al (2012) From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J Am Chem Soc 134:16662–16670. https://doi.org/10.1021/ja306199p

    Article  CAS  PubMed  Google Scholar 

  49. Link S, Beeby A, FitzGerald S et al (2002) Visible to infrared luminescence from a 28-atom gold cluster. J Phys Chem B 106:3410–3415. https://doi.org/10.1021/jp014259v

    Article  CAS  Google Scholar 

  50. Li D, Chen Z, Mei X (2017) Fluorescence enhancement for noble metal nanoclusters. Adv Coll Interface Sci 250:25–39. https://doi.org/10.1016/j.cis.2017.11.001

    Article  CAS  Google Scholar 

  51. Tan H, Zhou H, Zhao Y et al (2022) Regulation of silver nanoclusters with 4 orders of magnitude variation of fluorescence lifetimes with solvent-induced noncovalent interaction. J Phys Chem C 126:5198–5205. https://doi.org/10.1021/acs.jpcc.1c10375

    Article  CAS  Google Scholar 

  52. Zhou S, Zhang S, Li H et al (2021) Solvent-induced self-assembly of copper nanoclusters for white light emitting diodes. ACS Appl Nano Mater 4:10911–10920. https://doi.org/10.1021/acsanm.1c02374

    Article  CAS  Google Scholar 

  53. Zhang Q, Wang J, Meng Z et al (2021) Glutathione disulfide as a reducing, capping, and mass-separating agent for the synthesis and enrichment of gold nanoclusters. Nanomaterials 11:2258. https://doi.org/10.3390/nano11092258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang TQ, Peng B, Shan BQ et al (2020) Origin of the photoluminescence of metal nanoclusters: From metal-centered emission to ligand-centered emission. Nanomaterials 10:261. https://doi.org/10.3390/nano10020261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen J, Zhang QF, Bonaccorso TA et al (2014) Controlling gold nanoclusters by diphospine ligands. J Am Chem Soc 136:92–95. https://doi.org/10.1021/ja411061e

    Article  CAS  PubMed  Google Scholar 

  56. Wan XK, Yuan SF, Lin ZW, Wang QM (2014) A chiral gold nanocluster Au20 protected by tetradentate phosphine ligands. Angewandte Chemie - Int Ed 53:2923–2926. https://doi.org/10.1002/anie.201308599

    Article  CAS  Google Scholar 

  57. Das A, Li T, Nobusada K et al (2012) Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J Am Chem Soc 134:20286–20289. https://doi.org/10.1021/ja3101566

    Article  CAS  PubMed  Google Scholar 

  58. Jin R, Liu C, Zhao S et al (2015) Tri-icosahedral gold nanocluster [Au37(PPh3)10(SC2H4Ph)10X2]+: Linear assembly of icosahedral building blocks. ACS Nano 9:8530–8536. https://doi.org/10.1021/acsnano.5b03524

    Article  CAS  PubMed  Google Scholar 

  59. Shichibu Y, Negishi Y, Watanabe T et al (2020) Biicosahedral gold clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+(n = 2–18): A stepping stone to cluster-assembled materials. J Phys Chem C 111:7845–7847. https://doi.org/10.1021/jp073101t

    Article  CAS  Google Scholar 

  60. Maity P, Tsunoyama H, Yamauchi M et al (2011) Organogold clusters protected by phenylacetylene. J Am Chem Soc 133:20123–20125. https://doi.org/10.1021/ja209236n

    Article  CAS  PubMed  Google Scholar 

  61. Guan ZJ, Hu F, Li JJ et al (2020) Isomerization in alkynyl-protected gold nanoclusters. J Am Chem Soc 142:2995–3001. https://doi.org/10.1021/jacs.9b11836

    Article  CAS  PubMed  Google Scholar 

  62. Wang JQ, Shi S, He RL et al (2020) Total structure determination of the largest alkynyl-protected fcc gold nanocluster Au110 and the study on its ultrafast excited-state dynamics. J Am Chem Soc 142:18086–18092. https://doi.org/10.1021/jacs.0c07397

    Article  CAS  PubMed  Google Scholar 

  63. Wan XK, Tang Q, Yuan SF et al (2015) Au19 nanocluster featuring a v-shaped alkynyl−gold motif. J Am Chem Soc 137:652–655. https://doi.org/10.1021/ja512133a

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Wan XK, Ren L et al (2016) Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J Am Chem Soc 138:3278–3281. https://doi.org/10.1021/jacs.5b12730

    Article  CAS  PubMed  Google Scholar 

  65. Li G, Jin R (2014) Gold nanocluster-catalyzed semihydrogenation: A unique activation pathway for terminal alkynes. J Am Chem Soc 136:11347–11354. https://doi.org/10.1021/ja503724

    Article  CAS  PubMed  Google Scholar 

  66. Li X, Takano S, Tsukuda T (2021) Ligand effects on the hydrogen evolution reaction catalyzed by Au13 and Pt@Au12: alkynyl vs thiolate. J Phys Chem C 125:23226–23230. https://doi.org/10.1021/acs.jpcc.1c08197

    Article  CAS  Google Scholar 

  67. Xu Q, Wang S, Liu Z et al (2013) Synthesis of selenolate-protected Au18(SeC6H5)14 nanoclusters. Nanoscale 5:1176–1182. https://doi.org/10.1039/c2nr33466f

    Article  CAS  PubMed  Google Scholar 

  68. Hosier CA, Ackerson CJ (2019) Regiochemistry of thiolate for selenolate ligand exchange on gold clusters. J Am Chem Soc 141:309–314. https://doi.org/10.1021/jacs.8b10013

    Article  CAS  PubMed  Google Scholar 

  69. Chang WT, Sharma S, Liao JH et al (2018) Heteroatom-doping increases cluster nuclearity: from an [Ag20] to an [Au3Ag18] core. Chem Eur J 24:14352–14357. https://doi.org/10.1002/chem.201802679

    Article  CAS  PubMed  Google Scholar 

  70. Song Y, Zhong J, Yang S et al (2014) Crystal structure of Au25(SePh)18 nanoclusters and insights into their electronic, optical and catalytic properties. Nanoscale 6:13977–13985. https://doi.org/10.1039/c4nr04631e

    Article  CAS  PubMed  Google Scholar 

  71. Bhattacharyya K, Mukherjee S (2018) Fluorescent metal nano-clusters as next generation fluorescent probes for cell imaging and drug delivery. Bull Chem Soc Jpn 91:447–454. https://doi.org/10.1246/bcsj.20170377©

    Article  CAS  Google Scholar 

  72. Kailasa SK, Borse S, Koduru JR, Murthy ZVP (2021) Biomolecules as promising ligands in the synthesis of metal nanoclusters: Sensing, bioimaging and catalytic applications. Trends Environ Anal Chem 32:e00140. https://doi.org/10.1016/j.teac.2021.e00140

    Article  CAS  Google Scholar 

  73. Goswami N, Zheng K, Xie J (2014) Bio-NCs-the marriage of ultrasmall metal nanoclusters with biomolecules. Nanoscale 6:13328–13347. https://doi.org/10.1039/C4NR04561K

    Article  CAS  PubMed  Google Scholar 

  74. Song XR, Goswami N, Yang HH, Xie J (2016) Functionalization of metal nanoclusters for biomedical applications. Analyst 141:3126–3140. https://doi.org/10.1039/C6AN00773B

    Article  CAS  PubMed  Google Scholar 

  75. Yu Y, Mok BYL, Loh XJ, Tan YN (2016) Rational design of biomolecular templates for synthesizing multifunctional noble metal nanoclusters toward personalized theranostic applications. Adv Healthcare Mater 5:1844–1859. https://doi.org/10.1002/adhm.201600192

    Article  CAS  Google Scholar 

  76. Song C, Xu J, Chen Y et al (2019) DNA-templated fluorescent nanoclusters for metal ions detection. Molecules 24:1–16. https://doi.org/10.3390/molecules24224189

    Article  CAS  Google Scholar 

  77. Sahoo AK, Sailapu SK, Dutta D et al (2018) DNA-Templated Single Thermal Cycle Based Synthesis of Highly Luminescent Au Nanoclusters for Probing Gene Expression. ACS Sustain Chem Eng 6:2142–2151. https://doi.org/10.1021/acssuschemeng.7b03568

    Article  CAS  Google Scholar 

  78. Gwinn EG, O’Neill P, Guerrero AJ et al (2008) Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv Mater 20:279–283. https://doi.org/10.1002/adma.200702380

    Article  CAS  Google Scholar 

  79. Lettieri M, Palladino P, Scarano S, Minunni M (2022) Copper nanoclusters and their application for innovative fluorescent detection strategies: An overview. Sensors Actuators Rep 4:100108. https://doi.org/10.1016/j.snr.2022.100108

    Article  Google Scholar 

  80. O’Neill PR, Velazquez LR, Dunn DG et al (2009) Hairpins with poly-C loops stabilize four types of fluorescent Agn: DNA. J Phys Chem C 113:4229–4233. https://doi.org/10.1021/jp809274m

    Article  CAS  Google Scholar 

  81. Kennedy TAC, MacLean JL, Liu J (2012) Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH. Chem Commun 48:6845–6847. https://doi.org/10.1039/c2cc32841k

    Article  CAS  Google Scholar 

  82. Wang HB, Mao AL, Li YH et al (2020) A turn-on fluorescence strategy for biothiols determination by blocking Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. Luminescence 35:1296–1303. https://doi.org/10.1002/bio.3891

    Article  CAS  PubMed  Google Scholar 

  83. Schultz D, Gwinn E (2011) Stabilization of fluorescent silver clusters by RNA homopolymers and their DNA analogs: C, G versus A, T(U) dichotomy. Chem Commun 47:4715–4717. https://doi.org/10.1039/C0CC05061J

    Article  CAS  Google Scholar 

  84. Chevrier DM (2012) Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. J Nanophotonics 6:064504. https://doi.org/10.1117/1.JNP.6.064504

    Article  CAS  Google Scholar 

  85. Zhang P, Yang XX, Wang Y et al (2014) Rapid synthesis of highly luminescent and stable Au20 nanoclusters for active tumor-targeted imaging in vitro and in vivo. Nanoscale 6:2261–2269. https://doi.org/10.1039/c3nr05269a

    Article  CAS  PubMed  Google Scholar 

  86. Sasidharan S, Bahadur D, Srivastava R (2017) Rapid, one-pot, protein-mediated green synthesis of gold nanostars for computed tomographic imaging and photothermal therapy of cancer. ACS Sustain Chem Eng 5:10163–10175. https://doi.org/10.1021/acssuschemeng.7b02169

    Article  CAS  Google Scholar 

  87. Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976. https://doi.org/10.1038/nbt994

    Article  CAS  PubMed  Google Scholar 

  88. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889. https://doi.org/10.1021/ja806804u

    Article  CAS  PubMed  Google Scholar 

  89. Feng J, Chen Y, Han Y et al (2017) pH-regulated synthesis of trypsin-templated copper nanoclusters with blue and yellow fluorescent emission. ACS Omega 2:9109–9117. https://doi.org/10.1021/acsomega.7b01052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baksi A, Xavier PL, Chaudhari K et al (2013) Protein-encapsulated gold cluster aggregates: The case of lysozyme. Nanoscale 5:2009–2016. https://doi.org/10.1039/c2nr33180b

    Article  CAS  PubMed  Google Scholar 

  91. Pandit S, Kundu S (2020) pH-Dependent reversible emission behaviour of lysozyme coated fluorescent copper nanoclusters. J Lumin 228:117607. https://doi.org/10.1016/j.jlumin.2020.117607

    Article  CAS  Google Scholar 

  92. Mathew MS, Joseph K (2017) Green synthesis of gluten-stabilized fluorescent gold quantum clusters: Application as turn-on sensing of human blood creatinine. ACS Sustain Chem Eng 5:4837–4845. https://doi.org/10.1021/acssuschemeng.7b00273

    Article  CAS  Google Scholar 

  93. Kawasaki H, Hamaguchi K, Osaka I, Arakawa R (2011) pH-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv Func Mater 21:3508–3515. https://doi.org/10.1002/adfm.201100886

    Article  CAS  Google Scholar 

  94. Xu Y, Sherwood J, Qin Y et al (2014) The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 6:1515–1524. https://doi.org/10.1039/c3nr06040c

    Article  CAS  PubMed  Google Scholar 

  95. Chen CL, Rosi NL (2010) Peptide-based methods for the preparation of nanostructured inorganic materials. Angewandte Chemie - Int Ed 49:1924–1942. https://doi.org/10.1002/anie.200903572

    Article  CAS  Google Scholar 

  96. Yuan X, Luo Z, Zhang Q et al (2011) Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 5:8800–8808. https://doi.org/10.1021/nn202860sC2011

    Article  CAS  PubMed  Google Scholar 

  97. Baral A, Basu K, Ghosh S et al (2017) Size specific emission in peptide capped gold quantum clusters with tunable photoswitching behavior. Nanoscale 9:4419–4429. https://doi.org/10.1039/C7NR00353F

    Article  CAS  PubMed  Google Scholar 

  98. Huang H, Li H, Wang AJ et al (2014) Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging. Analyst 139:6536–6541. https://doi.org/10.1039/C4AN01757A

    Article  CAS  PubMed  Google Scholar 

  99. Raut S, Rich R, Fudala R et al (2014) Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores. Nanoscale 6:385–391. https://doi.org/10.1039/c3nr03886f

    Article  CAS  PubMed  Google Scholar 

  100. Shang L, Dong S (2008) Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. ChemCommun 1088–1090. https://doi.org/10.1039/b717728cWe

  101. Shang L, Dong S (2008) Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II). J Mater Chem 18:4636–4640. https://doi.org/10.1039/b810409c

    Article  CAS  Google Scholar 

  102. Qu F, Li NB, Luo HQ (2012) Polyethyleneimine-templated Ag nanoclusters: a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high. Anal Chem 84:10373–10379. https://doi.org/10.1021/ac3024526

    Article  CAS  PubMed  Google Scholar 

  103. Santiago González B, Rodríguez MJ, Blanco C et al (2010) One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. Nano Lett 10:4217–4221. https://doi.org/10.1021/nl1026716

    Article  CAS  PubMed  Google Scholar 

  104. Yuan X, Luo Z, Yu Y et al (2013) Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem Asian J 8:858–871. https://doi.org/10.1002/asia.201201236

    Article  CAS  PubMed  Google Scholar 

  105. Crooks RM, Zhao M, Sun L et al (2001) Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190. https://doi.org/10.1021/ar000110a

    Article  CAS  PubMed  Google Scholar 

  106. Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983. https://doi.org/10.1021/ja028282l

    Article  CAS  PubMed  Google Scholar 

  107. Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 26:7780–7781. https://doi.org/10.1021/ja035473v

    Article  CAS  Google Scholar 

  108. Zheng J, Zhang C, Dickson RM (2004) Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 93:5–8. https://doi.org/10.1103/PhysRevLett.93.077402

    Article  CAS  Google Scholar 

  109. Roberts BA, Strauss CR (2005) Toward rapid, “green”, predictable microwave-assisted synthesis. ChemInform 36:653–661. https://doi.org/10.1021/ar040278m

    Article  CAS  Google Scholar 

  110. Liu T, Su Y, Song H, Lv Y (2013) Microwave-assisted green synthesis of ultrasmall fluorescent water-soluble silver nanoclusters and its application in chiral recognition of amino acids. Analyst 138:6558–6564. https://doi.org/10.1039/C3AN01343J

    Article  CAS  PubMed  Google Scholar 

  111. Zhang J, Yuan Y, Wang Y et al (2015) Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res 8:2329–2339. https://doi.org/10.1007/s12274-015-0743-9

    Article  CAS  Google Scholar 

  112. Yue Y, Liu TY, Li HW et al (2012) Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(I) ions. Nanoscale 4:2251–2254. https://doi.org/10.1039/c2nr12056a

    Article  CAS  PubMed  Google Scholar 

  113. Shang Y, Gao H, Li L et al (2021) Green synthesis of fluorescent Ag nanoclusters for detecting Cu2+ ions and its “switch-on” sensing application for GSH. J Spectrosc 2021:1–10. https://doi.org/10.1155/2021/8829654

    Article  CAS  Google Scholar 

  114. Saleh SM, El-Sayed WA, El-Manawaty MA et al (2022) An eco-friendly synthetic approach for copper nanoclusters and their potential in lead ions sensing and biological applications. Biosensors 12:197. https://doi.org/10.3390/bios12040197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tang Z, Chen F, Wang D et al (2022) Fabrication of avidin - stabilized gold nanoclusters with dual emissions and their application in biosensing. J Nanobiotechnology 20:1–14. https://doi.org/10.1186/s12951-022-01512-8

    Article  CAS  Google Scholar 

  116. Shedbalkar U, Singh R, Wadhwani S et al (2014) Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv Coll Interface Sci 209:40–48. https://doi.org/10.1016/j.cis.2013.12.011

    Article  CAS  Google Scholar 

  117. Dutta V, Verma R, Gopalkrishnan C et al (2022) Bio-inspired synthesis of carbon-based nanomaterials and their potential environmental applications: a state-of-the-art review. Inorganics 10:. https://doi.org/10.3390/inorganics10100169

  118. Goswami U, Sahoo AK, Chattopadhyay A, Ghosh SS (2018) In situ synthesis of luminescent au nanoclusters on a bacterial template for rapid detection, quantification, and distinction of kanamycin-resistant bacteria. ACS Omega 3:6113–6119. https://doi.org/10.1021/acsomega.8b00504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goswami U, Basu S, Paul A et al (2017) White light emission from gold nanoclusters embedded bacteria. J Mater Chem C 5:12360–12364. https://doi.org/10.1039/C7TC04554A

    Article  CAS  Google Scholar 

  120. Ali K, Cherian T, Fatima S, Saquib Q (2020) Role of solvent system in green synthesis of nanoparticles. Green Synth Nanoparticles: Appl Prospects 53–74. https://doi.org/10.1007/978-981-15-5179-6_3

  121. Cuong HN, Pansambal S, Ghotekar S et al (2022) New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ Res 203:111858. https://doi.org/10.1016/j.envres.2021.111858

    Article  CAS  Google Scholar 

  122. Ghotekar S, Pansambal S, Bilal M et al (2021) Environmentally friendly synthesis of Cr2O3 nanoparticles: Characterization, applications and future perspective ─ a review. Case Stud Chem Environ Eng 3:100089. https://doi.org/10.1016/j.cscee.2021.100089

    Article  CAS  Google Scholar 

  123. Naikoo GA, Mustaqeem M, Hassan IU et al (2021) Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. J Saudi Chem Soc 25:101304

    Article  CAS  Google Scholar 

  124. Pansambal S, Oza R, Borgave S et al (2022) Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. Appl Nanosci. https://doi.org/10.1007/s13204-022-02574-8

    Article  Google Scholar 

  125. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Coll Interface Sci 169:59–79. https://doi.org/10.1016/j.cis.2011.08.004

    Article  CAS  Google Scholar 

  126. Ling S, Liang H, Li Z et al (2016) Soy protein-directed one-pot synthesis of gold nanomaterials and their functional conductive devices. J Mater Chem B 4:3643–3650. https://doi.org/10.1039/C6TB00616G

    Article  CAS  PubMed  Google Scholar 

  127. Li Z, Peng H, Liu J et al (2017) Plant protein-directed synthesis of luminescent gold nanocluster hybrids for tumor imaging. ACS Appl Mater Interfaces 10:83–90. https://doi.org/10.1021/acsami.7b13088

    Article  CAS  PubMed  Google Scholar 

  128. Bhamore JR, Deshmukh B, Haran V et al (2018) One-step eco-friendly approach for the fabrication of synergistically engineered fluorescent copper nanoclusters: Sensing of Hg2+ ion and cellular uptake and bioimaging properties. New J Chem 42:1510–1520. https://doi.org/10.1039/C7NJ04031H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.M. is thankful to the Council of Scientific & Industrial Research (CSIR), India, for providing a stipend. R. M. and N. G. thank the Department of Chemistry, Netaji Subash University of Technology (NSUT) for providing infrastructure. We thank Professor Saptarshi Mukherjee, Indian Institute of Science Education and Research (IISER) Bhopal, India for his valuable suggestion.

Funding

Author R.M. has received research support from the Council of Scientific & Industrial Research (CSIR), India (Grant number -CSIRAWARD/JRF-NET2021/113630). The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ritika Mittal has performed the literature search and drafted and critically revised the work. Nancy Gupta has contributed to the conceptualization and critical revision of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nancy Gupta.

Ethics declarations

Ethical Approval

Not Applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, R., Gupta, N. Towards Green Synthesis of Fluorescent Metal Nanoclusters. J Fluoresc 33, 2161–2180 (2023). https://doi.org/10.1007/s10895-023-03229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-023-03229-9

Keywords

Navigation