Skip to main content
Log in

Antigen-Induced Activation of Antibody Measured by Fluorescence Enhancement of FITC Label at Fc

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Three anti-carbohydrate antibodies of defined specificity isolated from plasma were used to demonstrate that macromolecular antigen binding caused considerable enhancement of fluorescence of FITC-labeled antibody. Mono and disaccharide antigens which could compete with the large antigens in antibody binding could not however produce any increase in fluorescence. Fluorescence enhancement in a given antibody sample increased with the size of the occupying macromolecular antigen. Conversely in antibody samples of same ligand specificity isolated from plasma of different individuals, fluorescence enhancement produced by the same antigen correlated with specific activity of the antibody sample. Removal of Fc part of antibody, confirmed by electrophoresis and Fc-specific antibody binding, caused abolition of most of the antigen-driven fluorescence increase. Since antigen binding sites of antibodies were protected during FITC labeling, the above results suggest that conformational shift in Fc produced by occupation of binding sites by large antigens resulted in the enhancement of fluorescence of FITC tags on Fc. Data provides a tool for detection and measurement of specific ligands using fluorolabeled whole antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schlessinger J, Steinberg IZ, Givol D et al (1975) Antigen-induced conformational changes in antibodies and their fab fragments studied by circular polarization of fluorescence. Proc Natl Acad Sci 72:2775–2779. doi:10.1073/pnas.72.7.2775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kuby J, Kindt TJ, Goldsby RA, Osborne BA (2007) Immunology, 6th edn. 5. pr. W.H. Freeman & Co., New York

    Google Scholar 

  3. Brown JC, Koshland ME (1975) Activation of antibody Fc function by antigen-induced conformational changes. Proc Natl Acad Sci U S A 72:5111–5115. doi:10.1073/pnas.72.12.5111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Berger C, Weber-Bornhauser S, Eggenberger J et al (1999) Antigen recognition by conformational selection. FEBS Lett 450:149–153. doi:10.1016/S0014-5793(99)00458-5

    Article  CAS  PubMed  Google Scholar 

  5. Stanfield RL, Wilson IA (1994) Antigen-induced conformational changes in antibodies: a problem for structural prediction and design. Trends Biotechnol 12:275–279. doi:10.1016/0167-7799(94)90139-2

    Article  CAS  PubMed  Google Scholar 

  6. Davies DR, Cohen GH (1996) Interactions of protein antigens with antibodies. Proc Natl Acad Sci 93:7–12. doi:10.1073/pnas.93.1.7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Oda M (2003) Evidence of allosteric conformational changes in the antibody constant region upon antigen binding. Int Immunol 15:417–426. doi:10.1093/intimm/dxg036

    Article  CAS  PubMed  Google Scholar 

  8. Keskin O (2007) Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies. BMC Struct Biol 7:31. doi:10.1186/1472-6807-7-31

    Article  PubMed Central  PubMed  Google Scholar 

  9. Abe R, Ohashi H, Iijima I et al (2011) “Quenchbodies”: quench-based antibody probes that show antigen-dependent fluorescence. J Am Chem Soc 133:17386–17394. doi:10.1021/ja205925j

    Article  CAS  PubMed  Google Scholar 

  10. Geetha M, Kalaivani V, Sabarinath PS, Appukuttan PS (2014) Plasma anti-α-galactoside antibody binds to serine- and threonine-rich peptide sequence of apo (a) subunit in Lp (a). Glycoconj J 31:289–298. doi:10.1007/s10719-014-9521-2

    Article  CAS  PubMed  Google Scholar 

  11. Jaison PL, Kannan VM, Geetha M, Appukuttan PS (1993) Epitopes recognized by serum anti-α-galactoside antibody are present on brain glycoproteins in man. J Biosci 18:187–193. doi:10.1007/BF02703115

    Article  CAS  Google Scholar 

  12. Paul A, Geetha M, Chacko BK, Appukuttan PS (2009) Multiple specificity of human serum dextran-binding immunoglobulin: α (1 → 6)- and β (1 → 3)-linked glucose and α (1 → 3)-linked galactose in natural glycoconjugates are recognized. Immunol Investig 38:153–164. doi:10.1080/08820130902729629

    Article  CAS  Google Scholar 

  13. Geetha M, Annamma KI, Mathai J, Appukuttan PS (2007) Normal human plasma anti-beta-glucoside antibody has markedly elevated IgA content and binds fungal and yeast polysaccharides. Immunol Investig 36:73–83. doi:10.1080/08820130600745737

    Article  CAS  Google Scholar 

  14. Hudson L, Hay FC (1980) Practical immunology, 2nd edn. Blackwell, Oxford

    Google Scholar 

  15. Appukuttan PS, Surolia A, Bachawat BK (1977) Isolation of two galactose-binding proteins from ricinus communis by affinity chromatography. Indian J Biochem Biophys 14:382–384

    CAS  PubMed  Google Scholar 

  16. Baues RJ, Gray GR (1977) Lectin purification on affinity columns containing reductively aminated disaccharides. J Biol Chem 252:57–60

    CAS  PubMed  Google Scholar 

  17. Heyderman E, Strudly K, Richardson TC (1986) Immunohistochemistry in pathology. In: Weir DM (ed) Handbook of experimental immunology. Blackwell Scientific Publications, Oxford, Boston

    Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  19. DuBois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  20. Travis J, Bowen J, Tewksbury D et al (1976) Isolation of albumin from whole human plasma and fractionation of albumin-depleted plasma. Biochem J 157:301–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sela-Culang I, Alon S, Ofran Y (2012) A systematic comparison of free and bound antibodies reveals binding-related conformational changes. J Immunol 189:4890–4899. doi:10.4049/jimmunol.1201493

    Article  CAS  PubMed  Google Scholar 

  22. Connell GE, Porter RR (1971) A new enzymic fragment (Facb) of rabbit immunoglobulin G. Biochem J 124:53P

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kabat EA (1960) The upper limit for the size of the human antidextran combining site. J Immunol Baltim Md 84:82–85

    CAS  Google Scholar 

  24. Galili U, Clark MR, Shohet SB et al (1987) Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1–3 Gal epitope in primates. Proc Natl Acad Sci 84:1369–1373. doi:10.1073/pnas.84.5.1369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cohen BE, Pralle A, Yao X et al (2005) A fluorescent probe designed for studying protein conformational change. Proc Natl Acad Sci 102:965–970. doi:10.1073/pnas.0409469102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Abe R, Jeong H-J, Arakawa D et al (2014) Ultra Q-bodies: quench-based antibody probes that utilize dye-dye interactions with enhanced antigen-dependent fluorescence. Sci Rep. doi:10.1038/srep04640

    Google Scholar 

  27. Semisotnov GV, Rodionova NA, Razgulyaev OI et al (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128. doi:10.1002/bip.360310111

    Article  CAS  PubMed  Google Scholar 

  28. Kusumi A, Winkelhake JL (1986) Fc: Fc interactions revealed by spin-labeled IgG heterosaccharides in model immune complexes. Biochem Biophys Res Commun 137:237–243. doi:10.1016/0006-291X(86)91201-5

    Article  CAS  PubMed  Google Scholar 

  29. Gaboriaud C, Juanhuix J, Gruez A et al (2003) The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties. J Biol Chem 278:46974–46982. doi:10.1074/jbc.M307764200

    Article  CAS  PubMed  Google Scholar 

  30. Springer GF, Horton RE (1969) Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J Clin Invest 48:1280–1291. doi:10.1172/JCI106094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Paul A, Antony M, Mathai J, Appukuttan PS (2011) High polymeric IgA content facilitates recognition of microbial polysaccharide-natural serum antibody immune complexes by immobilized human galectin-1. Immunol Lett 136:55–60. doi:10.1016/j.imlet.2010.12.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Genu George was awarded a fellowship by CSIR, Government of India. Authors are grateful to Ms. Sumitha. K. C for technical assistance and to the Department of Transfusion Medicine of this institute for supply of out-dated plasma.

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padinjaradath S. Appukuttan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, G., Geetha, M. & Appukuttan, P.S. Antigen-Induced Activation of Antibody Measured by Fluorescence Enhancement of FITC Label at Fc. J Fluoresc 25, 1493–1499 (2015). https://doi.org/10.1007/s10895-015-1640-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1640-z

Keywords

Navigation