Skip to main content
Log in

Plasma anti-α-galactoside antibody binds to serine- and threonine-rich peptide sequence of apo(a) subunit in Lp(a)

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Lipoprotein(a) immune complexes [Lp(a) IC] of varying particle density obtained by ultracentrifugation of plasma from normal healthy donors were markedly dominated by IgG. Lp(a) and immunoglobulins were liberated from plasma Lp(a) IC by treatment with melibiose, a sugar specific for circulating anti-α-galactoside antibody (anti-Gal). Upon incubation with plasma lipoprotein fraction anti-Gal but not the α-glucoside-specific antibody from human plasma formed de novo IC with Lp(a). Binding of Lp(a) sugar-reversibly enhanced the fluorescence of FITC-labeled anti-Gal as did binding of α-galactoside-containing glycoproteins. This effect apparently due to conformational shift in the Fc region of the antibody was also produced by apo(a) subunit separated from Lp(a) and de-O–glycosylated apo(a) but not by any other plasma lipoproteins or by Lp(a) pre-incubated with the O–glycan-specific lectin jacalin. O–Glycans and their terminal sialic acid moieties in apo(a) of circulating Lp(a)-anti-Gal IC, in contrast to those in pure Lp(a), were inaccessible to jacalin and anion exchange resin, respectively. Unlike other plasma lipoproteins, Lp(a) inhibited Griffonia simplicifolia isolectin B4 which also accommodates serine- and threonine-rich peptide sequence (STPS) as surrogate ligand to α-galactosides at its binding site. Results suggest that anti-Gal recognizes STPS in the O-glycan-rich regions of apo(a) subunit in Lp(a) which contains no α-linked galactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TAG:

Terminal α-linked galactose

STPS:

Serine- and threonine-rich peptide sequence

APAG:

Affinity-purified anti-Gal

GS I-B4 :

Griffonia simplicifolia isolectin B4

TI:

Soybean trypsin inhibitor

TIM:

Soybean trypsin inhibitor-melibiose

DIg:

Dextran-binding immunoglobulin

PBS:

Potassium phosphate buffer (20 mM) containing 150 mM NaCl

PBS-T:

PBS containing 0.05 % Tween 20

IC:

Immune complex

References

  1. Galili, U., Clark, M.R., Shohet, S.B., Buehler, J., Macher, B.A.: Evolutionary relationship between the anti-Gal antibody and the Gal α 1→3 Gal epitope in primates. Proc. Natl. Acad. Sci. U. S. A. 84, 1369–1373 (1987)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Minanov, O.P., Itescu, S., Neethling, F.A., Morgenthau, A.S., Pawel, K., Cooper, D.K.C., Michler, R.E.: Anti-Gal IgG antibodies in sera of newborn humans and baboons and its significance in pig xenotransplantation. Transplantation 63, 182–186 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. Galili, U., Rachmilewitz, E.A., Peleg, A., Flechner, I.: A unique natural human IgG antibody with anti α galactosyl specificity. J. Exp. Med. 160, 1519–1531 (1984)

    Article  CAS  PubMed  Google Scholar 

  4. Galili, U., Mandrell, R.E., Hamadeh, R.M., Shohet, S.B., Griffis, J.M.: Interaction between anti-α-galactosyl immunoglobulin G and bacteria of the human flora. Infect. Immun. 56, 1730–1737 (1988)

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Jaison, P.L., Kannan, V.M., Geetha, M., Appukuttan, P.S.: Epitopes recognized by serum anti-α-galactoside antibody are present on brain glycoproteins in man. J. Biosci. 18, 187–193 (1993)

    Article  CAS  Google Scholar 

  6. David, E.M., Anoop, C., Schofeld, P.M., Grainger, D.J.: A pattern of anti-carbohydrate antibody responses present in patients with advanced atherosclerosis. J. Immunol. Methods 309, 182–191 (2006)

    Article  Google Scholar 

  7. Wigglesworth, K.M., Racki, W.J., Mishra, R., Szomolanyi-Tsuda, E., Griener, D.L., Galili, U.: Rapid recruitment and activation of macrophages by anti-Gal/α-Gal liposome interaction acclerates wound healing. J. Immunol. 186, 4422–4432 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. Sandrin, M.S., Vaughan, H.A., Pie-Xiang, X., McKenzie, I.F.C.: Natural human anti-Galα(1,3)Gal antibodies react with human mucin peptides. Glycoconj J 14, 97–105 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Jones, G.T., van Ril, A.M., Cole, J., Williams, M.J., Bateman, E.H., Marcovina, S.M., Deng, M., McCormick, S.P.A.: Plasma lipoprotein(a) indicates risk for distinct forms of vascular disease. Clin. Chem. 53(4), 679–685 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Smith, E.B., Cochran, S.: Factors influenzing the accumulation in fibrous plaques of lipid derived from low density lipoprotein II. Preferential immobilization of lipoprotein(a) [Lp(a)]. Atherosclerosis 84, 173–181 (1990)

    Article  CAS  PubMed  Google Scholar 

  11. Lawn, R.M., Schwartz, K., Patthy, L.: Convergent evolution of apolipoprotein(a) in primates and hedgehog. Proc. Natl. Acad. Sci. 94, 11992–11997 (1997)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Geetha, M., Sabarinath, P.S., Kalaivani, V., Appukuttan, P.S.: Human plasma anti-∞-galactoside antibody forms immune complex with autologous lipoprotein(a). Immunol. Investig 42(4), 324–340 (2013)

    Article  Google Scholar 

  13. Dati, F., Tate, J.R., Marcovina, S.M., Steinmetz, A.: International Federation of Clinical Chemistry and Laboratory medicine; IFCC Working Group for Lipoprotein(a) assay standardization. Clin. Chem. Lab. Med. 42(6), 670–676 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Suresh Kumar, G., Appukuttan, P.S., Basu, D.: Purification and characterization of an α-galactose binding lectin from jack fruit seed (Artocarpus integrifolia). J. Biosci. 4, 257–261 (1982)

    Article  Google Scholar 

  15. Surolia, A., Prakash, N., Bishayee, S., Bachawat, B.K.: Isolation and comparative physico-chemical studies of Concanavalin A from Canavalia ensiformis and Canavalia gladiata. Indian J. Biochem. Biophys. 10(3), 145–148 (1973)

    CAS  PubMed  Google Scholar 

  16. Paul, A., Geetha, M., Balu, K., Chacko, B.K., Appukuttan, P.S.: Multiple specificity of human serum dextran-binding immunoglobulin: α (1→6)- and β(1→3)-linked glucose and α (1→3)-linked galactose in natural glycoconjugates are recognized. Immunol. Investig 38, 153–164 (2009)

    Article  CAS  Google Scholar 

  17. Baues, R.J., Gray, R.: Lectin purification on affinity columns containing reductively aminated disaccharides. J. Biosci. 252, 57–60 (1977)

    CAS  Google Scholar 

  18. Paul, A., Antony, M., Mathai, J., Appukuttan, P.S.: High polymeric IgA content facilitates recognition of microbial polysaccharide-natural serum antibody immune complexes by immobilized human galectin-1. Immunol. Lett. 136(1), 55–60 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Hudson, L., Hay, F.C.: Practical immunology, p. 12. Blackwell Scientific Publications, Oxford (1976)

    Google Scholar 

  20. Towbin, H., Staehelin, T., Gorden, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. PNAS 76(9), 4350–4354 (1979)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jaison, P.L., Appukuttan, P.S.: Rapid isolation of human plasma anti-α-galactoside antibody using sugar-specific binding to guar galactomannan or agarose. Indian J. Biochem. Biophys. 29, 266–270 (1992)

    CAS  PubMed  Google Scholar 

  22. Sreekumar, A., Mandagini, G., Sabarinath, S.P., Sankunni, A.P.: ApoB-independent enzyme immunoassay for lipoprotein(a) by capture on immobilized lectin (jacalin). J Immunoass. Immunochem. 34, 166–179 (2013)

    Article  CAS  Google Scholar 

  23. Sini, S., Jayakumari, N.: Functionally defective high density lipoprotein is pro-oxidant : a deviation from normal atheroprotective character. Int. J. Nutr. Food Sci 2(3), 92–101 (2013)

    Article  CAS  Google Scholar 

  24. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  25. Trieu, V.N., Zionchek, T.F., Lawn, R.M., McConathy, W.J.: Interaction of apolipoprotein(a) with apolipoprotein B-containing lipoproteins. J. Biol. Chem. 266, 5480–5485 (1991)

    CAS  PubMed  Google Scholar 

  26. Ryoji, A., Hiroyuki, O., Issei, I., Masaki, I., Hiroaki, T., Takahiro, H.: Hiroshi.: “Quenchbodies”: quench-based antibody probes that show antigen-dependent fluorescence. J. Am. Chem. Soc. 133, 17386–17394 (2011)

    Article  Google Scholar 

  27. Hamadeh, R.M., Galili, U., Zhou, P., Griffiss, J.M.: Anti-alpha galactosyl immunoglobulin A (IgA), IgG and IgM in human secretions. Clin. Diagn. Lab. Immunol. 2, 125–131 (1995)

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Spiro, R.G., Bhoyroo, V.D.: Occurrence of alpha-D-galactosyl residues in the thyroglobulins from several species. Localization in the saccharide chains of the complex carbohydrate units. J. Biol. Chem. 259(15), 9858–9866 (1984)

    CAS  PubMed  Google Scholar 

  29. Springer, G.F., Desai, P.R., Murthy, M.S., Scanion, E.F.: Human carcinoma-associated precursor antigens of the NM blood group system. J. Surg. Oncol. 11, 95–106 (1979)

    Article  CAS  PubMed  Google Scholar 

  30. Skea, D.L., Christopoulous, P., Plaut, A.G., Underdown, B.J.: Studies on the specificity of the IgA-binding lectin, jacalin. Mol. Immunol. 25, 1–6 (1988)

    Article  CAS  PubMed  Google Scholar 

  31. Tonegawa, S.: Somatic generation of antibody diversity. Nature 302, 575–581 (1983)

    Article  CAS  PubMed  Google Scholar 

  32. Nezlin, R.: A quantitative approach to the determination of antigen in immune complexes. J. Immunol. Methods 237, 1–17 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Caravon, P., Carella, C.: Evidence for positive cooperativity in antigen-antibody reactions. FEBS Lett. 40(1), 13–17 (1974)

    Article  Google Scholar 

  34. May, P., Bock, H.H., Nimpf, J., Herz, J.: Differential glycosylation regulates processing of lipoprotein receptors by γ-secretase. J. Biol. Chem. 278, 37386–37392 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Avila, J., Leon-Espinosa, G., Garcia, E., Garcia- Escudero, V., Hernandez, F., Defelipe, J.: Tau phosphorylation by GSK3 in different conditions. Intl. J. Alzheim Dis. 2012, 578373 (2012). doi:10.1155/2012/578373

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. Jaisy Mathai, Head, Department of Blood Transfusion Services of this institute for the out-dated plasma samples provided.

Conflict of interest

There is no conflict of interest of any sort in respect of any author or host institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Appukuttan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geetha, M., Kalaivani, V., Sabarinath, P.S. et al. Plasma anti-α-galactoside antibody binds to serine- and threonine-rich peptide sequence of apo(a) subunit in Lp(a). Glycoconj J 31, 289–298 (2014). https://doi.org/10.1007/s10719-014-9521-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9521-2

Keywords

Navigation