Skip to main content
Log in

Investigation on Crystal Structure, Spectroscopic Characterization, Thermal Analysis, Conductivity Study and Antioxidant Activity of a Novel Compound Containing Cluster Entities (C7H10N)2·(HgCl2)2·(Hg2Cl6)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

A Correction to this article was published on 16 June 2023

This article has been updated

Abstract

The new compound based on mercury (II) (C7H10N)2·(HgCl2)2·(Hg2Cl6) 1 was described by numerous approach: X-ray diffraction (powder and single crystal), FT-IR, photoluminescence, UV–Vis, Hirshfeld surface analysis, thermal analysis, electric conductivity and finally a biological study was carried out through the antioxidant activity. Depending on the XRD data, the dimers (Hg2Cl6)2−, the infinite chains (parallel to the c-axis) formed by (HgCl2) and the 2-ethylpyridinium cation are bound together by weak H-bonds and electrostatics interactions forming a 3D network. The purity of 1 was checked by PXRD. The Hirshfeld surface analysis was used to investigate intermolecular interactions present in the compound 1. Infrared spectroscopy has been used to assign the varied functional groups. UV–Vis spectroscopy showed two bands located respectively at 240 nm and 280 nm. The photoluminescence analysis indicates the presence of fluorescence at 235 nm. A phase transition around 345 K has been shown by thermal analysis studies (TG-DSC and TG–DTA). The complex impedance of 1 has been performed in temperature range 295–343 K. Finally, the antioxidant activity study reveals that compound 1 can be used as a free radical scavenging substance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Change history

References

  1. K. Wei, B. Zhang, J. Ni, J. Geng, J. Zhang, D. Xu, Y. Cui, and Y. Liu (2015). Inorg. Chem. Commun. 51, 103. https://doi.org/10.1016/j.inoche.2014.11.018.

    Article  CAS  Google Scholar 

  2. M. A. Fersi, I. Chaabane, M. Gargouri, and A. Bulou (2015). Polyhedron 85, 41. https://doi.org/10.1016/j.poly.2014.08.056.

    Article  CAS  Google Scholar 

  3. P. Czarnecki and H. Maluszynska (2000). J. Phys.: Condens. Matter. 12 (22), 4881.

    CAS  Google Scholar 

  4. M. Hanaya, H. Shibazaki, M. Oguni, T. Nemoto, and Y. Ohashi (2000). J. Phys. Chem. Solids 61 (5), 651. https://doi.org/10.1016/S0022-3697(99)00348-0.

    Article  CAS  Google Scholar 

  5. S. K. Seth, I. Saha, C. Estarellas, A. Frontera, T. Kar, and S. Mukhopadhyay (2011). Cryst. Growth Des. 11 (7), 3250. https://doi.org/10.1021/cg200506q.

    Article  CAS  Google Scholar 

  6. P. Manna, S. K. Seth, A. Das, J. Hemming, R. Prendergast, M. Helliwell, S. R. Choudhury, A. Frontera, and S. Mukhopadhyay (2012). Inorg. Chem. 51 (6), 3557. https://doi.org/10.1021/ic202317f.

    Article  CAS  PubMed  Google Scholar 

  7. S. K. Seth, P. Manna, N. J. Singh, M. Mitra, A. D. Jana, A. Das, S. R. Choudhury, T. Kar, S. Mukhopadhyay, and K. S. Kim (2013). Cryst. Eng. Comm. 15 (7), 1285. https://doi.org/10.1039/C2CE26577J.

    Article  CAS  Google Scholar 

  8. P. Manna, S. K. Seth, M. Mitra, A. Das, N. J. Singh, S. R. Choudhury, T. Kar, and S. Mukhopadhyay (2013). Cryst. Eng. Comm. 15 (39), 7879. https://doi.org/10.1039/C3CE41230J.

    Article  CAS  Google Scholar 

  9. P. Manna, S. K. Seth, M. Mitra, S. R. Choudhury, A. Bauza, A. Frontera, and S. Mukhopadhyay (2014). Cryst. Growth Des. 14 (11), 5812. https://doi.org/10.1021/cg5014126.

    Article  CAS  Google Scholar 

  10. T. W. Hayton and G. J. Wu (2008). J. Am. Chem. Soc. 130 (6), 2005. https://doi.org/10.1021/ja077538q.

    Article  CAS  PubMed  Google Scholar 

  11. M. R. MacDonald, M. E. Fieser, J. E. Bates, J. W. Ziller, F. Furche, and W. J. Evans (2013). J. Am. Chem. Soc. 135 (36), 13310. https://doi.org/10.1021/ja406791t.

    Article  CAS  PubMed  Google Scholar 

  12. I. S. R. Karmel, N. Fridman, M. Tamm, and M. S. Eisen (2014). J. Am. Chem. Soc. 136 (49), 17180. https://doi.org/10.1021/ja5091436.

    Article  CAS  PubMed  Google Scholar 

  13. G. Nocton, J. Pecaut, and M. Mazzanti (2008). Angew. Chem. Int. Ed. 120 (16), 3082. https://doi.org/10.1002/ange.200705742.

    Article  Google Scholar 

  14. W. Lee, A. C. Lockhart, R. B. Kim, and M. L. Rothenberg (2005). Rothenberg. Oncol. 10 (2), 104. https://doi.org/10.1634/theoncologist.10-2-104.

    Article  CAS  Google Scholar 

  15. S. H. V. Rijt and P. J. Sadler (2009). Drug Discov. Today 14 (23–24), 1089. https://doi.org/10.1016/j.drudis.2009.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. A. Fallas, L. Gonzalez, and I. Corral (2009). Tetrahedron 65 (1), 232. https://doi.org/10.1016/j.tet.2008.10.065.

    Article  CAS  Google Scholar 

  17. I. Płowaś, P. Szklarz, R. Jakubas, and G. Bator (2011). Mat. Res. Bull. 46 (8), 1177. https://doi.org/10.1016/j.materresbull.2011.04.013.

    Article  CAS  Google Scholar 

  18. N. Hannachi, K. Guidara, A. Bulou, and F. Hlel (2010). Mater. Res. Bull. 45 (11), 1754. https://doi.org/10.1016/j.materresbull.2010.06.035.

    Article  CAS  Google Scholar 

  19. T. Dorn, C. Janiak, and K. Abu-Shandi (2005). Cryst. Eng. Comm. 7 (106), 633. https://doi.org/10.1039/b508944a.

    Article  CAS  Google Scholar 

  20. Y. L. Jack (2003). Coord. Chem. Rev. 246, 327. https://doi.org/10.1016/j.cct.2003.08.005.

    Article  CAS  Google Scholar 

  21. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. van de Streek (2006). J. Appl. Crystallogr. 39 (3), 453. https://doi.org/10.1107/S002188980600731X.

    Article  CAS  Google Scholar 

  22. W. Brand-Williams, M. E. Cuvelier, and C. Berset (1995). LWT 28, 25. https://doi.org/10.1016/S0023-6438(95)80008-5.

    Article  CAS  Google Scholar 

  23. M. Kumar, S. K. Verma, B. Singh, A. Thakur, A. Kumar, and D. Jasrotia (2015). Chem. Sci. 4 (2), 629. https://doi.org/10.7598/cst2015.1009.

    Article  CAS  Google Scholar 

  24. J. Dinesh, M. Rademeyer, D. G. Billing, and A. Lemmerer (2008). Acta. Crystallogr. Sect. E. 64 (12), m1598. https://doi.org/10.1107/S1600536808038415.

    Article  CAS  Google Scholar 

  25. M. B. Jomaa, N. F. Bourguiba, H. Chebbi, M. S. Abdelbaky, S. García-Granda, N. Korbi, and H. I. Ouzari (2020). J. Coord. Chem. 73 (3), 506. https://doi.org/10.1080/00958972.2020.1735631.

    Article  CAS  Google Scholar 

  26. R. Q. Zhu (2012). Acta Crystallogr. Sect. E. 68 (2), m148. https://doi.org/10.1107/S1600536811055371.

    Article  CAS  Google Scholar 

  27. C. Ayari, M. G. Althobaiti, A. A. Alotaibi, A. Almarri, V. Ferretti, C. Ben Nasr, and M. H. Mrad (2021). J Chem. https://doi.org/10.1155/2021/2857369.

    Article  Google Scholar 

  28. C. Ayari, A. A. Alotaibi, K. M. Alotaibi, V. Ferretti, W. Kaminsky, F. Lefebvre, C. Ben Nasr, and M. H. Mrad (2022). Chem. Pap. 76 (4), 2327. https://doi.org/10.1002/1521-3765(20020715)8:14.

    Article  CAS  Google Scholar 

  29. A. G. Ortiz, P. A. Martinez, M. Angelic, D. Hernandez, E. Mijangos, M. F. Alamo, C. P. Casas, C. C. Camacho, R. Contreras, A. F. Parra, J. Reedijk, and N. B. Behrens (2013). J. Mol. Struct. 1032, 265. https://doi.org/10.1161/CIRCULATIONAHA.113.003653.

    Article  CAS  Google Scholar 

  30. M. Mghandef and H. Boughzala (2015). Acta Crystallogr. Sect. E. 71 (5), 555. https://doi.org/10.1107/S2056989015007707.

    Article  CAS  Google Scholar 

  31. R. Elwej, M. Hamdi, N. Hannachi, and F. Hlel (2014). Spectrochim. Acta, Part A 121, 632. https://doi.org/10.1016/j.saa.2013.10.109.

    Article  CAS  Google Scholar 

  32. S. Haddad and R. D. Willett (2001). Inorg. Chem. 40 (10), 2457. https://doi.org/10.1021/ic000613c.

    Article  CAS  PubMed  Google Scholar 

  33. S. P. Jose and S. Mohan (2006). Spectrochimi. Acta Part A 64 (1), 240. https://doi.org/10.1016/j.saa.2005.06.043.

    Article  CAS  Google Scholar 

  34. N. Karaa, B. Hamdi, A. B. Salah, and R. Zouari (2012). J. Mol. Struct. 1013, 168. https://doi.org/10.1016/j.molstruc.2011.12.053.

    Article  CAS  Google Scholar 

  35. K. Thanigaimani, N. C. Khalib, E. Temel, S. Arshad, and I. A. Razak (2015). J. Mol. Struct. 1099, 246. https://doi.org/10.1016/j.molstruc.2015.06.015.

    Article  CAS  Google Scholar 

  36. T. Suthan, N. P. Rajesh, C. K. Mahadevan, and G. Bhagavannarayana (2011). Mater. Chem. Phys. 129 (1–2), 433. https://doi.org/10.1016/j.matchemphys.2011.04.038.

    Article  CAS  Google Scholar 

  37. B. Babu, J. Chandrasekaran, B. Mohanbabu, Y. Matsushita, and M. Saravanakumar (2016). RSC Adv. 6 (112), 110884. https://doi.org/10.1039/C6RA15791B.

    Article  CAS  Google Scholar 

  38. Z. Ouerghi, I. Dridi, T. Roisnel, and R. Kefi (2021). J. Mol. Struct. 1242, 130721. https://doi.org/10.1016/j.molstruc.2021.130721.

    Article  CAS  Google Scholar 

  39. B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie (2015). Phys. Status Solidi B 252 (8), 1700. https://doi.org/10.1002/pssb.201552007.

    Article  CAS  Google Scholar 

  40. H. Y. Ye, Q. Zhou, X. Niu, W. Q. Liao, D. W. Fu, Y. Zhang, Y.-M. You, J. Wang, Z.-N. Chen, and R. G. Xiong (2015). J. Am. Chem. Soc 137 (40), 13148. https://doi.org/10.1021/jacs.5b08290.

    Article  CAS  PubMed  Google Scholar 

  41. R. Visbal, V. Fernández-Moreira, I. Marzo, A. Laguna, and M. C. Gimeno (2016). Dalton Trans. 45 (38), 15026. https://doi.org/10.1039/C6DT02878K.

    Article  CAS  PubMed  Google Scholar 

  42. X. Q. Liang, R. K. Gupta, Y. W. Li, H. Y. Ma, L. N. Gao, C. H. Tung, and D. Sun (2020). Inorg. Chem. 59 (5), 2680. https://doi.org/10.1021/acs.inorgchem.9b02919.

    Article  CAS  PubMed  Google Scholar 

  43. M. Głodek, S. Pawlędzio, A. Makal, and D. Plażuk (2019). Chem. Eur. J. 25 (57), 13131. https://doi.org/10.1002/chem.201901101.

    Article  CAS  PubMed  Google Scholar 

  44. Z. H. Li, L. P. Xue, Q. P. Qin, J. Zhang, J. M. Wang, X. Y. Zhang, and B. T. Zhao (2019). J. Solid State Chem. 274, 81. https://doi.org/10.1016/j.jssc.2019.03.020.

    Article  CAS  Google Scholar 

  45. Q. Hu, Y.-H. Yue, L.-Q. Chai, and L.-J. Tang (2019). J. Mol. Struct. 1197, 508. https://doi.org/10.1016/j.molstruc.2019.07.041.

    Article  CAS  Google Scholar 

  46. S. Mao, X. Han, C. Li, G. Huang, K. Shen, X. Shi, and H. Wu (2018). J. Coord. Chem. 71 (20), 3330. https://doi.org/10.1080/00958972.2018.1514116.

    Article  CAS  Google Scholar 

  47. Y. Qu, C. Wang, Y.-C. Wu, H.-L. Wu, X. T. Han, J. H. Xu, and X. Z. Xia (2020). J. Lumin. 226, 117437. https://doi.org/10.1016/j.jlumin.2020.117437.

    Article  CAS  Google Scholar 

  48. O. A. Fedorova, N. E. Shepel, S. D. Tokarev, E. V. Lukovskaya, Y. A. Sotnikova, A. A. Moiseeva, A. D’Aléo, F. Fages, F. Maurel, and Y. V. Fedorov (2019). New J. Chem. 43 (6), 2817. https://doi.org/10.1039/C8NJ05697H.

    Article  CAS  Google Scholar 

  49. M. Tsurui, Y. Kitagaw, K. Fushimi, M. Gon, K. Tanaka, and Y. Hasegawa (2020). Dalton Trans. 49 (16), 5352. https://doi.org/10.1039/D0DT00699H.

    Article  CAS  PubMed  Google Scholar 

  50. N. Karâa, B. Hamdi, A. Ben Salah, and R. Zouari (2013). J. Mol. Struct. 1049, 48. https://doi.org/10.1016/j.molstruc.2013.06.003.

    Article  CAS  Google Scholar 

  51. A. Jellibi, I. Chaabane, and K. Guidara (2016). J. Phys. E. 80, 155. https://doi.org/10.1016/j.physe.2016.02.001.

    Article  CAS  Google Scholar 

  52. H. Nithya, S. Selvasekarapandian, D. A. Kumar, A. Sakunthala, M. Hema, P. Christopherselvin, J. Kawamura, and R. B. Sanjeeviraja (2011). J. Mater. Chem. Phys. C. 126 (1–2), 404. https://doi.org/10.1016/j.matchemphys.2010.10.047.

    Article  CAS  Google Scholar 

  53. C. Lermer, A. Senocrate, I. Moudrakovski, T. Seewald, A. K. Hatz, P. Mayer, F. Pielnhofer, J. A. Jaser, L. Schmidt-Mende, J. Maier, and B. V. Lotsch (2018). Chem. Mater. 30 (18), 6289. https://doi.org/10.1021/acs.chemmater.8b01840.

    Article  CAS  Google Scholar 

  54. I. Mkaouar, N. Karâa, B. Hamdi, and R. Zouari (2016). J. Mol. Struct. 1115, 161. https://doi.org/10.1016/j.molstruc.2016.02.070.

    Article  CAS  Google Scholar 

  55. J. Makhlouf, A. Valkonen, and W. Smirani (2022). Polyhedron 213, 115625. https://doi.org/10.1016/j.poly.2021.115625.

    Article  CAS  Google Scholar 

  56. K. Brandenburg, Diamond Version 2.0 (Impact GbR, Bonn, 1998).

    Google Scholar 

  57. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman, CrystalExplorer, Version 1.5 (University of Western Australia, Perth, 2007).

    Google Scholar 

  58. A. Altomare, M. C. Burla, C. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. Moliterni, G. Polidori, and J. Spagna (1999). J. Appl. Crystallogr. 32, 115.

    Article  CAS  Google Scholar 

  59. G. M. Sheldrick (2015). Acta Cryst. C71, 3–8.

    Google Scholar 

Download references

Acknowledgements

The author extent their appreciation to the deanship of scientific research at Shaqra University for funding this research work through the project number (SU-ANN-202220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Habib Mrad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CIF 127 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayari, C., Mrad, M.H., Alotaibi, A.A. et al. Investigation on Crystal Structure, Spectroscopic Characterization, Thermal Analysis, Conductivity Study and Antioxidant Activity of a Novel Compound Containing Cluster Entities (C7H10N)2·(HgCl2)2·(Hg2Cl6). J Clust Sci 34, 2859–2880 (2023). https://doi.org/10.1007/s10876-023-02433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02433-8

Keywords

Navigation