Skip to main content
Log in

Maximal clique method for the automated analysis of NMR TOCSY spectra of complex mixtures

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Characterization of the chemical components of complex mixtures in solution is important in many areas of biochemistry and chemical biology, including metabolomics. The use of 2D NMR total correlation spectroscopy (TOCSY) experiments has proven very useful for the identification of known metabolites as well as for the characterization of metabolites that are unknown by taking advantage of the good resolution and high sensitivity of this homonuclear experiment. Due to the complexity of the resulting spectra, automation is critical to facilitate and speed-up their analysis and enable high-throughput applications. To better meet these emerging needs, an automated spin-system identification algorithm of TOCSY spectra is introduced that represents the cross-peaks and their connectivities as a mathematical graph, for which all subgraphs are determined that are maximal cliques. Each maximal clique can be assigned to an individual spin system thereby providing a robust deconvolution of the original spectrum for the easy extraction of critical spin system information. The approach is demonstrated for a complex metabolite mixture consisting of 20 compounds and for E. coli cell lysate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartels C, Billeter M, Güntert P, Wüthrich K (1996) Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J Biomol NMR 7:207–213

    Article  Google Scholar 

  • Bingol K, Brüschweiler R (2011) Deconvolution of chemical mixtures with high complexity by NMR consensus trace clustering. Anal Chem 83:7412–7417

    Article  Google Scholar 

  • Bingol K, Brüschweiler R (2014) Multidimensional approaches to NMR-based metabolomics. Anal Chem 86:47–57

    Article  Google Scholar 

  • Bingol K, Zhang FL, Bruschweiler-Li L, Brüschweiler R (2012a) Carbon backbone topology of the metabolome of a cell. J Am Chem Soc 134:9006–9011

    Article  Google Scholar 

  • Bingol K, Zhang FL, Bruschweiler-Li L, Brüschweiler R (2012b) TOCCATA: a customized carbon total correlation spectroscopy NMR metabolomics database. Anal Chem 84:9395–9401

    Article  Google Scholar 

  • Bingol K, Bruschweiler-Li L, Li DW, Brüschweiler R (2014) Customized metabolomics database for the analysis of NMR H-1-H-1 TOCSY and C-13-H-1 HSQC-TOCSY spectra of complex mixtures. Anal Chem 86:5494–5501

    Article  Google Scholar 

  • Bingol K, Bruschweiler-Li L, Yu C, Somogyi A, Zhang FL, Brüschweiler R (2015) Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal Chem 87:3864–3870

    Article  Google Scholar 

  • Bingol K, Li DW, Zhang B, Brüschweiler R (2016) Comprehensive metabolite identification strategy using multiple two-dimensional NMR spectra of a complex mixture implemented in the COLMARm web server. Anal Chem 88:12411–12418

    Article  Google Scholar 

  • Bodenhausen G, Ruben DJ (1980) Natural abundance N-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189

    Article  ADS  Google Scholar 

  • Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53:521–528

    ADS  Google Scholar 

  • Bron C, Kerbosch J (1973) Finding all cliques of an undirected graph. Commun ACM 16:575–577

    Article  MATH  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRpipe: a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Eccles C, Güntert P, Billeter M, Wüthrich K (1991) Efficient analysis of protein 2D NMR spectra using the software package EASY. J Biomol NMR 1:111–130

    Article  Google Scholar 

  • Fan TWM, Lane AN (2016) Applications of NMR spectroscopy to systems biochemistry. Prog Nucl Magn Reson Spectrosc 92–93:18–53

    Article  Google Scholar 

  • Feige U (2004) Approximating maximum clique by removing subgraphs. SIAM J Discret Math 18:219–225

    Article  MathSciNet  MATH  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. A series of books in the mathematical sciences. W. H. Freeman, San Francisco

    MATH  Google Scholar 

  • Gowda GAN, Raftery D (2015) Can NMR solve some significant challenges in metabolomics? J Magn Reson 260:144–160

    Article  ADS  Google Scholar 

  • Gross JL, Yellen J (2006) Graph theory and its applications. Discrete mathematics and its applications, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Koichi S, Arisaka M, Koshino H, Aoki A, Iwata S, Uno T, Satoh H (2014) Chemical structure elucidation from C-13 NMR chemical shifts: efficient data processing using bipartite matching and maximal clique algorithms. J Chem Inf Model 54:1027–1035

    Article  Google Scholar 

  • Markley JL, Brüschweiler R, Edison A, Eghbalnia H, Powers R, Raftery D, Wishart DS (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40

    Article  Google Scholar 

  • Oschkinat H, Holak TA, Cieslar C (1991) Assignment of protein NMR-spectra in the light of homonuclear 3d spectroscopy: an automatable procedure based on 3d TOCSY-TOCSY and 3d TOCSY-NOESY. Biopolymers 31:699–712

    Article  Google Scholar 

  • Raymond JW, Willett P (2002) Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J Comput Aided Mol Des 16:521–533

    Article  ADS  Google Scholar 

  • Robinette SL, Zhang FL, Bruschweiler-Li L, Brüschweiler R (2008) Web server based complex mixture analysis by NMR. Anal Chem 80:3606–3611

    Article  Google Scholar 

  • Ulrich EL et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408

    Article  Google Scholar 

  • van Geeresteinujah EC, Slijper M, Boelens R, Kaptein R (1995) Graph-theoretical assignment of secondary structure in multidimensional protein NMR-spectra: application to the lac repressor headpiece. J Biomol NMR 6:67–78

    Article  Google Scholar 

  • Wishart DS et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526

    Article  Google Scholar 

  • Wishart DS et al (2013) HMDB 3.0: the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807

    Article  Google Scholar 

  • Xu J, Straus SK, Sanctuary BC, Trimble L (1994) Use of fuzzy mathematics for complete automated assignment of peptide H-1 2d NMR-spectra. J Magn Reson Ser B 103:53–58

    Article  Google Scholar 

  • Zhang F, Brüschweiler R (2007) Robust deconvolution of complex mixtures by covariance TOCSY spectroscopy. Angew Chem Int Ed 46:2639–2642

    Article  Google Scholar 

  • Zhang F, Bruschweiler-Li L, Brüschweiler R (2010) Simultaneous de novo identification of molecules in chemical mixtures by doubly indirect covariance NMR spectroscopy. J Am Chem Soc 132:16922–16927

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bruschweiler-Li for providing the E. coli cell lysate sample. This work was supported by the National Institutes of Health (Grant R01GM066041). All NMR experiments were conducted at the CCIC NMR facility at the Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Wei Li or Rafael Brüschweiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DW., Wang, C. & Brüschweiler, R. Maximal clique method for the automated analysis of NMR TOCSY spectra of complex mixtures. J Biomol NMR 68, 195–202 (2017). https://doi.org/10.1007/s10858-017-0119-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0119-4

Keywords

Navigation