Skip to main content
Log in

Maximum common subgraph isomorphism algorithms for the matching of chemical structures

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The maximum common subgraph (MCS) problem has become increasingly important in those aspects of chemoinformatics that involve the matching of 2D or 3D chemical structures. This paper provides a classification and a review of the many MCS algorithms, both exact and approximate, that have been described in the literature, and makes recommendations regarding their applicability to typical chemoinformatics tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhl, F., Crippen, G. and Friesen, D., J. Comput. Chem., 5 (1984) 24.

    Google Scholar 

  2. Raymond, J. and Willett, P., J. Comput.-Aided Mol. Des., 16 (2002) 59.

    Google Scholar 

  3. Willett, P., IMA Vol. Math. Its Appl., 108 (1999) 11.

    Google Scholar 

  4. Gifford, E., Johnson, M., Smith, D. and Tsai, C., Network Science, 2 (1996) 1.

    Google Scholar 

  5. McGregor, J. and Willett, P., J. Chem. Inf. Comput. Sci., 21 (1981) 137.

    Google Scholar 

  6. Tonnelier, C., Jauffret, P., Hanser, T. and Kaufman, G., Tetrahedron Comput. Methodol., 3 (1990) 351.

    Google Scholar 

  7. Armitage, J.E., Crowe, J.E., Evans, P.N. and Lynch, M.F., J. Chem. Doc., 7 (1967) 209.

    Google Scholar 

  8. Arita, M., J. Jap. Soc. Artific. Intell., 15 (2000) 703.

    Google Scholar 

  9. Chen, L. and Robien, W., J. Chem. Inf. Comput. Sci., 34 (1994) 934.

    Google Scholar 

  10. Cone, M., Venkataraghavan, R. and McLafferty, F., J. Am. Chem. Soc., 99 (1977) 7668.

    Google Scholar 

  11. Horaud, R. and Skordas, T., IEEE Trans. Pattern Anal. Mach. Intell., 11 (1989) 1168.

    Google Scholar 

  12. Pelillo, M., Siddiqi, K. and Zucker, S.W., IEEE Trans. Pattern Anal. Mach. Intell., 21 (1999) 1105.

    Google Scholar 

  13. Shearer, K., Bunke, H. and Venkatesh, S., Video Indexing and Similarity Retrieval by Largest Common Subgraph Detection Using Decision Trees, No. IDIAP-RR 00–15, Dalle Molle Institute for Perceptual Artificial Intelligence, Martigny, Valais, Switzerland, 2000.

  14. Bolles, R. and Cain, R., Int. J. Robotics Res., 1 (1982) 57.

    Google Scholar 

  15. Pla, F. and Marchant, J., Comput. Vision Image Understand., 66 (1997) 271.

    Google Scholar 

  16. Radig, B., Pattern Recogn., 17 (1984) 161.

    Google Scholar 

  17. Yang, B., Snyder, W. and Bilbro, G., Image and Vision Computing, 7 (1989) 135.

    Google Scholar 

  18. Diestel, R., Graph Theory, Springer-Verlag, New York, 2000.

  19. McGregor, J., Software Pract. Exper., 12 (1982) 23.

    Google Scholar 

  20. Whitney, H., Amer. J. Math., 54 (1932) 150.

    Google Scholar 

  21. Beineke, L.W., J. Comb. Theory, 9 (1970) 129.

    Google Scholar 

  22. van Rooij, A. and Wilf, H., Acta Math. Hungar., 16 (1965) 263.

    Google Scholar 

  23. Nicholson, V., Tsai, C., Johnson, M. and Naim, M., In King, R.B. and Rouvray, D.H. (Eds.), Graph Theory and Topology in Chemistry, Elsevier, Athens, GA, 1987, pp. 226.

  24. Kvasnicka, V. and Pospichal, J., Reports in Molecular Theory, 1 (1990) 99.

    Google Scholar 

  25. Durand, P., An Improved Program for Topological Similarity Analysis of Molecules, Department of Mathematics and Computer Science, Kent State, Toledo, OH, 1996.

  26. Durand, P., Pasari, R., Baker, J. and Tsai, C., Internet J. Chem., 2 (1999) 1.

    Google Scholar 

  27. Koch, I., Theor. Comput. Sci., 250 (2001) 1.

    Google Scholar 

  28. Raymond, J., Gardiner, E. and Willett, P., Comput. J., in the press.

  29. Chen, C.K. and Yun, D.Y., International Conference on Systems, Signals, Control, Computers, Durban, South Africa, 1998.

  30. Kann, V., On the Approximability of NP-Complete Optimization Problems, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm, Sweden, 1992.

  31. Garey, M.R. and Johnson, D.S., Computers and Intractability, W. H. Freeman, San Francisco, CA, 1979.

    Google Scholar 

  32. Levi, G., Calcolo, 9 (1972) 341.

    Google Scholar 

  33. Bessonov, Y.E., Vychisl. Sistemy, (1985) 3.

  34. Barrow, H. and Burstall, R., Inf. Proc. Lett., 4 (1976) 83.

    Google Scholar 

  35. Vizing, V.G., Third All-Union Conference on Problems of Theoretical Cybernetics, Novosibirsk, 1974, pp. 124.

  36. Kozen, D., SIGACT News, 10 (1978) 50.

    Google Scholar 

  37. Grasselli, A., Calcolo, 3 (1966) 165.

    Google Scholar 

  38. Bron, C. and Kerbosch, J., Commun. ACM, 16 (1973) 575.

    Google Scholar 

  39. Ogawa, H., Pattern Recogn., 19 (1986) 35. 533

    Google Scholar 

  40. Koch, I. and Lengauer, T., Int. Conf. Intell. Syst. Mol. Biol., 5th, 1997, pp. 167.

  41. Takahashi, Y., Maeda, S. and Sasaki, S., Anal. Chim. Acta, 200 (1987) 363.

    Google Scholar 

  42. Brint, A.T. and Willet, P., J. Chem. Inf. Comput. Sci., 27 (1987) 152.

    Google Scholar 

  43. Martin, Y., Bures, M., et al., J. Comput.-Aided Mol. Des., 7 (1993) 83.

    Google Scholar 

  44. Bayada, D. and Johnson, A.P., Underst. Chem. React., 14 (1995) 243.

    Google Scholar 

  45. Bessonov, Y. and Skorobogatov, V., Vychisl. Sistemy, (1982) 3.

  46. Bessonov, Y.E., Vychisl. Sistemy, (1985) 23.

  47. Skorobogatov, V.A., Applied Problems on Graphs and Networks, Akad. Nauk SSSR Sibirsk, Otdel., Vychisl. Tsentr, 1981, pp. 117.

  48. Bessonov, Y.E., Vychisl. Sistemy, (1987) 43.

  49. Raymond, J., Gardiner, E. and Willet, P., J. Chem. Inf. Comput. Sci., 42 (2002) 305.

    Google Scholar 

  50. Wong, A. and Akinniyi, F., Proc. Int. Conf. Systems, Man and Cybern., Bombay & New Delhi, India, 1983, pp. 197.

  51. Akkiniyi, F., Wong, A.K.C. and Stacey, D. A., IEEE Transactions on Systems, Man and Cybernetics, IEEE, 1986, pp. 740.

  52. Ullmann, J.R., J. ACM, 23 (1976) 31.

    Google Scholar 

  53. Barnard, J.M., J. Chem. Inf. Comput. Sci., 33 (1993) 532.

    Google Scholar 

  54. Akutsu, T., IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, E76–A (1993) 1488.

    Google Scholar 

  55. Gabow, H.N., Inf. Proc. Lett., 74 (2000) 107.

    Google Scholar 

  56. Wagener, M. and Gasteiger, J., Angew. Chem. Int. Ed. Engl., 33 (1994) 1189.

    Google Scholar 

  57. Brown, R.D., Jones, G., Willett P. and Glen, R., J. Chem. Inf. Comput. Sci., 34 (1994) 63.

    Google Scholar 

  58. Wang, T. and Zhou, J., J. Chem. Inf. Comput. Sci., 37 (1997) 828.

    Google Scholar 

  59. Xu, J., J. Chem. Inf. Comput. Sci., 36 (1996) 25.

    Google Scholar 

  60. Frohlich, H., Kosir, A. and Zajc, B., Inform. Sci., 133 (2001) 195.

    Google Scholar 

  61. Funabiki, N. and Kitamichi, J., IEICE Trans. Inf. &Syst., E82–D (1999) 1145.

    Google Scholar 

  62. Kirkpatric, S., Gelatt, C.D. and Vecchi, M.P., Science, 220 (1983) 671.

    Google Scholar 

  63. Barakat, M.T. and Dean, P.M., J. Comput.-Aided Mol. Des., 5 (1991) 107.

    Google Scholar 

  64. Schadler, I., Wysotzki, I., Komorowski, J. and Zytkow, J., In Principles of Data Mining and Knowledge Discovery, 1997, pp. 254.

  65. Wipke, W.T. and Rogers, D., Tetrahedron Comput. Methodol., 2 (1989) 177.

    Google Scholar 

  66. Varkony, T., Shiloach, Y. and Smith, D., J. Chem. Inf. Comput. Sci., 19 (1979) 104.

    Google Scholar 

  67. Takahashi, Y., Satoh, Y. and Sasaki, S., Anal. Sci., 3 (1987) 23.

    Google Scholar 

  68. Hagadone, T.R., J. Chem. Inf. Comput. Sci., 32 (1992) 515.

    Google Scholar 

  69. Bayada, D.M., Simpson, R.W., Johnson, A.P. and Laurenco, C., J. Chem. Inf. Comput. Sci., 32 (1992) 680.

    Google Scholar 

  70. Brown, R.D., A Hyperstructure Model for Chemical Structure Handling, Department of Information Studies, University of Sheffield, Sheffield, UK, 1993.

  71. Chen, Z.Z., Automata, Languages and Programming, Springer, 1996, pp. 268.

  72. Chen, L. and Robien, W., J. Chem. Inf. Comput. Sci., 32 (1992) 501.

    Google Scholar 

  73. Sheridan, R.P. and Miller, M.D., J. Chem. Inf. Comput. Sci., 38 (1998) 915.

    Google Scholar 

  74. Gondran, M., Minoux, M. and Vajda, S., Graphs and Algorithms, John Wiley & Sons, 1984, pp. 41.

  75. Syslo, M., Deo, N. and Kowalik, J., Discrete Optimization Algorithms, Prentice-Hall, 1983, pp. 227.

  76. Jørgensen, A.M.M. and Pedersen, J.T., J. Chem. Inf. Comput. Sci., 41 (2001) 338.

    Google Scholar 

  77. Gardiner, E., Artymiuk, P. and Willett, P., J. Mol. Graph. Model., 15 (1997) 245.

    Google Scholar 

  78. Crandell, C.W. and Smith, D.H., J. Chem. Inf. Comput. Sci., 23 (1983) 186.

    Google Scholar 

  79. Masuda, S., Yoshioka, H. and Tanaka, E., Electronics and Communications in Japan. Part 3, 81 (1998) 48.

    Google Scholar 

  80. Takahashi, Y., Sukekawa, M. and Sasaki S., J. Chem. Inf. Comput. Sci., 32 (1992) 639.

    Google Scholar 

  81. Yuan, S., Zheng, C., Zhao, X. and Zeng, F., Anal. Chim. Acta, 235 (1990) 239.

    Google Scholar 

  82. Gillet, V.J., Downs, G.M., Holliday, J.D., Lynch, M.F., Dethlefsen, W., J. Chem. Inf. Comput. Sci., 31 (1991) 260.

    Google Scholar 

  83. Rarey, M. and Dixon J.S., J. Comput.-Aided Mol. Des., 12 (1998) 471.

    Google Scholar 

  84. Clark, D.E., Willett, P. and Kenny, P.W., J. Mol. Graphics, 10 (1992) 194.

    Google Scholar 

  85. Pepperrell, C.A., Taylor, R. and Willett, P., Tetrahedron Comput. Methodol., 3 (1992) 575.

    Google Scholar 

  86. Johnson, M., Naim, M., Nicholson, V. and Tsai, C., In King, R.B. and Rouvray, D.H. (Eds.), Graph Theory and Topology in Chemistry, Elsevier Science Publishers, 1987, pp. 219.

  87. Brint, A. and Willett, P., J. Comput.-Aided Mol. Des., 2 (1989) 311.

    Google Scholar 

  88. Ting, A., McGuire, R., Johnson, P. and Green6 S., J. Chem. Inf. Comput. Sci., 40 (2000) 347.

    Google Scholar 

  89. Wood, D., Oper. Res. Lett., 21 (1997) 211.

    Google Scholar 

  90. Ostergard, P., Discrete Appl. Math., 120 (2002) 195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Raymond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raymond, J.W., Willett, P. Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J Comput Aided Mol Des 16, 521–533 (2002). https://doi.org/10.1023/A:1021271615909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021271615909

Navigation