Skip to main content
Log in

Research advances in hydrogel-based wound dressings for diabetic foot ulcer treatment: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diabetic foot ulcers (DFUs) are one of the most challenging and prevalent refractory wounds associated with diabetes mellitus. It is characterized with long courses, high recurrence and disability rates. Hydrogel-based wound dressings have been demonstrated an effective and promising strategy for treating diabetic wounds. However, the complexity of the pathogenesis and microenvironment in diabetic wounds have restricted both the experts in functional hydrogels and clinicians. The former had no inspiration for clinical demands in the design process, and the latter was confused about clinical use because they knew little about the tremendous potential of the functional hydrogels. Here, important targets for DFUs treatment were listed, and effective products underlying the molecular pathogenesis were suggested for the designer. Then, the application of hydrogels into DFUs were classified in accordance with their functional targets and active ingredients. Hence, it is very convenient for clinicians to make a perfect option for different wounds. Finally, research gaps and future prospects for wound-healing hydrogels were presented. We envision that this review can inspire creativity and innovation in the development of hydrogel-based wound dressings for diabetic foot ulcer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. American Diabetes A (2020) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care 43(Suppl 1):S14–S31. https://doi.org/10.2337/dc20-S002

    Article  Google Scholar 

  2. Sun H, Saeedi P, Karuranga S et al (2022) IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119

    Article  PubMed  Google Scholar 

  3. Armstrong DG, Swerdlow MA, Armstrong AA et al (2020) Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res 13(1):16. https://doi.org/10.1186/s13047-020-00383-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Armstrong DG, Boulton AJM, Bus SA (2017) Diabetic foot ulcers and their recurrence. N Engl J Med 376(24):2367–2375. https://doi.org/10.1056/NEJMra1615439

    Article  PubMed  Google Scholar 

  5. Reardon R, Simring D, Kim B et al (2020) The diabetic foot ulcer. Aust J Gen Pract 49(5):250–255. https://doi.org/10.31128/AJGP-11-19-5161

    Article  PubMed  Google Scholar 

  6. Huang ZH, Li SQ, Kou Y et al (2019) Risk factors for the recurrence of diabetic foot ulcers among diabetic patients: a meta-analysis. Int Wound J 16(6):1373–1382. https://doi.org/10.1111/iwj.13200

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chamberlain RC, Fleetwood K, Wild SH et al (2022) Foot ulcer and risk of lower limb amputation or death in people with diabetes: a national population-based retrospective cohort study. Diabetes Care 45(1):83–91. https://doi.org/10.2337/dc21-1596

    Article  PubMed  Google Scholar 

  8. Bandyk DF (2018) The diabetic foot: pathophysiology, evaluation, and treatment. Semin Vasc Surg 31(2–4):43–48. https://doi.org/10.1053/j.semvascsurg.2019.02.001

    Article  PubMed  Google Scholar 

  9. Francia P, Gualdani E, Policardo L et al (2022) Mortality risk associated with diabetic foot complications in people with or without history of diabetic foot hospitalizations. J Clin Med 11(9):2454. https://doi.org/10.3390/jcm11092454

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dogruel H, Aydemir M, Balci MK (2022) Management of diabetic foot ulcers and the challenging points: an endocrine view. World J Diabetes 13(1):27–36. https://doi.org/10.4239/wjd.v13.i1.27

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schaper NC, van Netten JJ, Apelqvist J et al (2020) Practical Guidelines on the prevention and management of diabetic foot disease (IWGDF 2019 update). Diabetes Metab Res Rev 36(Suppl 1):e3266. https://doi.org/10.1002/dmrr.3266

    Article  PubMed  Google Scholar 

  12. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366(9498):1736–1743. https://doi.org/10.1016/S0140-6736(05)67700-8

    Article  PubMed  Google Scholar 

  13. Ryall C, Duarah S, Chen S et al (2022) Advancements in skin delivery of natural bioactive products for wound management: a brief review of two decades. Pharmaceutics 14(5):1072. https://doi.org/10.3390/pharmaceutics14051072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ongarora BG (2022) Recent technological advances in the management of chronic wounds: a literature review. Health Sci Rep 5(3):e641. https://doi.org/10.1002/hsr2.641

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hunt TK, Hopf HW (1997) Wound healing and wound infection. What surgeons and anesthesiologists can do. Surg Clin North Am 77(3):587–606. https://doi.org/10.1016/s0039-6109(05)70570-3

    Article  CAS  PubMed  Google Scholar 

  16. Stadelmann WK, Digenis AG, Tobin GR (1998) Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg 176(2A Suppl):26S-38S. https://doi.org/10.1016/s0002-9610(98)00183-4

    Article  CAS  PubMed  Google Scholar 

  17. Undas A, Wiek I, Stepien E et al (2008) Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care 31(8):1590–1595. https://doi.org/10.2337/dc08-0282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Al SH (2022) Macrophage phenotypes in normal and diabetic wound healing and therapeutic interventions. Cells 11(15):2430. https://doi.org/10.3390/cells11152430

    Article  CAS  Google Scholar 

  19. Peng Y, Xiong RP, Zhang ZH et al (2021) Ski promotes proliferation and inhibits apoptosis in fibroblasts under high-glucose conditions via the FoxO1 pathway. Cell Prolif 54(2):e12971. https://doi.org/10.1111/cpr.12971

    Article  CAS  PubMed  Google Scholar 

  20. Hu SC, Lan CE (2016) High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing. J Dermatol Sci 84(2):121–127. https://doi.org/10.1016/j.jdermsci.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  21. Wei F, Wang A, Wang Q et al (2020) Plasma endothelial cells-derived extracellular vesicles promote wound healing in diabetes through YAP and the PI3K/Akt/mTOR pathway. Aging (Albany NY) 12(12):12002–12018. https://doi.org/10.18632/aging.103366

    Article  CAS  PubMed  Google Scholar 

  22. Nie X, Zhang H, Shi X et al (2020) Asiaticoside nitric oxide gel accelerates diabetic cutaneous ulcers healing by activating Wnt/beta-catenin signaling pathway. Int Immunopharmacol 79:106109. https://doi.org/10.1016/j.intimp.2019.106109

    Article  CAS  PubMed  Google Scholar 

  23. Geng K, Ma X, Jiang Z et al (2023) WDR74 facilitates TGF-beta/Smad pathway activation to promote M2 macrophage polarization and diabetic foot ulcer wound healing in mice. Cell Biol Toxicol 39(4):1577–1591. https://doi.org/10.1007/s10565-022-09748-8

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Zhang B, Yang Y et al (2022) FOXM1 accelerates wound healing in diabetic foot ulcer by inducing M2 macrophage polarization through a mechanism involving SEMA3C/NRP2/Hedgehog signaling. Diabetes Res Clin Pract 184:109121. https://doi.org/10.1016/j.diabres.2021.109121

    Article  CAS  PubMed  Google Scholar 

  25. Luanraksa S, Jindatanmanusan P, Boonsiri T et al (2018) An MMP/TIMP ratio scoring system as a potential predictive marker of diabetic foot ulcer healing. J Wound Care 27(12):849–855. https://doi.org/10.12968/jowc.2018.27.12.849

    Article  PubMed  Google Scholar 

  26. Zubair M, Ahmad J (2019) Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review. Rev Endocr Metab Disord 20(2):207–217. https://doi.org/10.1007/s11154-019-09492-1

    Article  PubMed  Google Scholar 

  27. Yang H-L, Tsai Y-C, Korivi M et al (2017) Lucidone promotes the cutaneous wound healing process via activation of the PI3K/AKT. Wnt/β-catenin and NF-κB signaling pathways 1864(1):151–168

    CAS  Google Scholar 

  28. Zhao Y, Liu M, Zhang Y et al (2015) Expression changes of Wnt/β-catenin signaling pathway in diabetic ulcer. Chin J Pathophysiol 31(11):2033–2038. https://doi.org/10.3969/j.issn.1000-4718.2015.11.018

    Article  CAS  Google Scholar 

  29. Lee EG, Luckett-Chastain LR, Calhoun KN et al (2019) Interleukin 6 function in the skin and isolated keratinocytes is modulated by hyperglycemia. J Immunol Res 3:5087847. https://doi.org/10.1155/2019/5087847

    Article  CAS  Google Scholar 

  30. Amin KN, Umapathy D, Anandharaj A et al (2020) miR-23c regulates wound healing by targeting stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) among patients with diabetic foot ulcer. Microvasc Res 127:103924. https://doi.org/10.1016/j.mvr.2019.103924

    Article  CAS  PubMed  Google Scholar 

  31. Liu L, Chen R, Jia Z et al (2022) Downregulation of hsa-miR-203 in peripheral blood and wound margin tissue by negative pressure wound therapy contributes to wound healing of diabetic foot ulcers. Microvasc Res 139:104275. https://doi.org/10.1016/j.mvr.2021.104275

    Article  CAS  PubMed  Google Scholar 

  32. Pichu S, Sathiyamoorthy J, Vimalraj S et al (2017) Impact of lysyl oxidase (G473A) polymorphism on diabetic foot ulcers. Int J Biol Macromol 103:242–247. https://doi.org/10.1016/j.ijbiomac.2017.05.050

    Article  CAS  PubMed  Google Scholar 

  33. Xu Y, Chen H, Fang Y et al (2022) Hydrogel combined with phototherapy in wound healing. Adv Healthc Mater 11(16):e2200494. https://doi.org/10.1002/adhm.202200494

    Article  CAS  PubMed  Google Scholar 

  34. Stan D, Tanase C, Avram M et al (2021) Wound healing applications of creams and “smart” hydrogels. Exp Dermatol 30(9):1218–1232. https://doi.org/10.1111/exd.14396

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gjorevski N, Sachs N, Manfrin A et al (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539(7630):560–564. https://doi.org/10.1038/nature20168

    Article  CAS  PubMed  Google Scholar 

  36. Zhang W, Zhang Y, Zhang Y et al (2021) Adhesive and tough hydrogels: from structural design to applications. J Mater Chem B 9(30):5954–5966. https://doi.org/10.1039/d1tb01166a

    Article  CAS  PubMed  Google Scholar 

  37. Fuchs S, Shariati K, Ma M (2020) Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 9(2):e1901396. https://doi.org/10.1002/adhm.201901396

    Article  CAS  PubMed  Google Scholar 

  38. Vasile C, Pamfil D, Stoleru E et al (2020) New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules 25(7):1539. https://doi.org/10.3390/molecules25071539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hotz N, Wilcke L, Weber W (2013) Design, synthesis, and application of stimulus-sensing biohybrid hydrogels. Macromol Rapid Commun 34(20):1594–1610. https://doi.org/10.1002/marc.201300468

    Article  CAS  PubMed  Google Scholar 

  40. Malone-Povolny MJ, Maloney SE, Schoenfisch MH (2019) Nitric Oxide Therapy for Diabetic Wound Healing. Adv Healthc Mater 8(12):e1801210. https://doi.org/10.1002/adhm.201801210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229. https://doi.org/10.1177/0022034509359125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bjarnsholt T, Kirketerp-Moller K, Jensen PO et al (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10. https://doi.org/10.1111/j.1524-475X.2007.00283.x

    Article  PubMed  Google Scholar 

  43. Satitsri S, Muanprasat C (2020) Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications. Molecules 25(24):5961. https://doi.org/10.3390/molecules25245961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Webber MJ, Pashuck ET (2021) (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 172:275–295. https://doi.org/10.1016/j.addr.2021.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waters DJ, Engberg K, Parke-Houben R et al (2010) Morphology of photopolymerized end-linked poly(ethylene glycol) hydrogels by small angle X-ray Scattering. Macromolecules 43(16):6861–6870. https://doi.org/10.1021/ma101070s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferreira PG, Ferreira VF, da Silva FC et al (2022) Chitosans and nanochitosans: recent advances in skin protection, regeneration, and repair. Pharmaceutics 14(6):1307. https://doi.org/10.3390/pharmaceutics14061307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ganan M, Carrascosa AV, Martinez-Rodriguez AJ (2009) Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action. J Food Prot 72(8):1735–1738. https://doi.org/10.4315/0362-028x-72.8.1735

    Article  CAS  PubMed  Google Scholar 

  48. Matica MA, Aachmann FL, Tondervik A et al (2019) Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int J Mol Sci 20(23):5889. https://doi.org/10.3390/ijms20235889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Raafat D, von Bargen K, Haas A et al (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74(12):3764–3773. https://doi.org/10.1128/AEM.00453-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV (2019) Molecular mechanisms of chitosan interactions with fungi and plants. Int J Mol Sci 20(2):332. https://doi.org/10.3390/ijms20020332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan H, Ma R, Lin C et al (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14(1):1854–1869. https://doi.org/10.3390/ijms14011854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vishu Kumar AB, Varadaraj MC, Gowda LR et al (2005) Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem J 391(Pt 2):167–175. https://doi.org/10.1042/BJ20050093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu C, Long L, Cao J et al (2021) Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem Eng J 411:128564

    Article  CAS  Google Scholar 

  54. He J, Li Z, Wang J et al (2023) Photothermal antibacterial antioxidant conductive self-healing hydrogel with nitric oxide release accelerates diabetic wound healing. Compos Part B Eng 266:110985

    Article  CAS  Google Scholar 

  55. Kasparova P, Zmuda M, Vankova E et al (2021) Low-molecular weight chitosan enhances antibacterial effect of antibiotics and permeabilizes cytoplasmic membrane of Staphylococcus epidermidis biofilm cells. Folia Microbiol (Praha) 66(6):983–996. https://doi.org/10.1007/s12223-021-00898-6

    Article  CAS  PubMed  Google Scholar 

  56. Jing YJ, Hao YJ, Qu H et al (2007) Studies on the antibacterial activities and mechanisms of chitosan obtained from cuticles of housefly larvae. Acta Biol Hung 58(1):75–86. https://doi.org/10.1556/ABiol.57.2007.1.7

    Article  CAS  PubMed  Google Scholar 

  57. Younes I, Sellimi S, Rinaudo M et al (2014) Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int J Food Microbiol 185:57–63. https://doi.org/10.1016/j.ijfoodmicro.2014.04.029

    Article  CAS  PubMed  Google Scholar 

  58. Mellegard H, Strand SP, Christensen BE et al (2011) Antibacterial activity of chemically defined chitosans: influence of molecular weight, degree of acetylation and test organism. Int J Food Microbiol 148(1):48–54. https://doi.org/10.1016/j.ijfoodmicro.2011.04.023

    Article  CAS  PubMed  Google Scholar 

  59. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174. https://doi.org/10.3390/md13031133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cele ZED, Somboro AM, Amoako DG et al (2020) Fluorinated Quaternary Chitosan Derivatives: Synthesis, Characterization, Antibacterial Activity, and Killing Kinetics. ACS Omega 5(46):29657–29666. https://doi.org/10.1021/acsomega.0c01355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoque J, Adhikary U, Yadav V et al (2016) Chitosan derivatives active against multidrug-resistant bacteria and pathogenic fungi: in vivo evaluation as topical antimicrobials. Mol Pharm 13(10):3578–3589. https://doi.org/10.1021/acs.molpharmaceut.6b00764

    Article  CAS  PubMed  Google Scholar 

  62. Wahid F, Hu XH, Chu LQ et al (2019) Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Int J Biol Macromol 122:380–387. https://doi.org/10.1016/j.ijbiomac.2018.10.105

    Article  CAS  PubMed  Google Scholar 

  63. Omidi S, Kakanejadifard A (2019) Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: Synthesis, characterization, antibacterial, and antioxidant activities. Carbohydr Polym 208:477–485. https://doi.org/10.1016/j.carbpol.2018.12.097

    Article  CAS  PubMed  Google Scholar 

  64. Zhao X, Wu H, Guo B et al (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  65. Wang M, Yue L, Niazi S et al (2022) Synthesis and characterization of cinnamic acid conjugated N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride derivatives: A hybrid flocculant with antibacterial activity. Int J Biol Macromol 206:886–895. https://doi.org/10.1016/j.ijbiomac.2022.03.075

    Article  CAS  PubMed  Google Scholar 

  66. Sivanesan I, Muthu M, Gopal J et al (2021) Nanochitosan: commemorating the metamorphosis of an exoskeletal waste to a versatile nutraceutical. Nanomater (Basel) 11(3):821. https://doi.org/10.3390/nano11030821

    Article  CAS  Google Scholar 

  67. Duan S, Wang R (2013) Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Prog Nat Sci Mater Int 23(2):113–126. https://doi.org/10.1016/j.pnsc.2013.02.001

    Article  Google Scholar 

  68. Guo Z, Chen Y, Wang Y et al (2020) Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. J Mater Chem B 8(22):4764–4777. https://doi.org/10.1039/d0tb00099j

    Article  CAS  PubMed  Google Scholar 

  69. Hamdan S, Pastar I, Drakulich S et al (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci 3(3):163–175. https://doi.org/10.1021/acscentsci.6b00371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kedziora A, Speruda M, Krzyzewska E et al (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19(2):444. https://doi.org/10.3390/ijms19020444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Choudhury H, Pandey M, Lim YQ et al (2020) Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. Mater Sci Eng C Mater Biol Appl 112:110925. https://doi.org/10.1016/j.msec.2020.110925

    Article  CAS  PubMed  Google Scholar 

  72. Burdusel AC, Gherasim O, Grumezescu AM et al (2018) Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomater (Basel) 8(9):681. https://doi.org/10.3390/nano8090681

    Article  CAS  Google Scholar 

  73. Das S, Baker AB (2016) Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol 4:82. https://doi.org/10.3389/fbioe.2016.00082

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bruna T, Maldonado-Bravo F, Jara P et al (2021) Silver nanoparticles and their antibacterial applications. Int J Mol Sci 22(13):7202. https://doi.org/10.3390/ijms22137202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao Y, Li Z, Song S et al (2019) Skin-Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings. Adv Funct Mater 29(31):1901474. https://doi.org/10.1002/adfm.201901474

    Article  CAS  Google Scholar 

  76. Wang P, Jiang S, Li Y et al (2021) Virus-like mesoporous silica-coated plasmonic Ag nanocube with strong bacteria adhesion for diabetic wound ulcer healing. Nanomedicine 34:102381. https://doi.org/10.1016/j.nano.2021.102381

    Article  CAS  PubMed  Google Scholar 

  77. Pham TN, Jiang YS, Su CF et al (2020) In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities. Int J Biol Macromol 146:1050–1059. https://doi.org/10.1016/j.ijbiomac.2019.09.230

    Article  CAS  PubMed  Google Scholar 

  78. Laurenti M, Cauda V (2017) ZnO nanostructures for tissue engineering applications. Nanomater (Basel) 7(11):374. https://doi.org/10.3390/nano7110374

    Article  CAS  Google Scholar 

  79. Jamnongkan T, Sukumaran SK, Sugimoto M et al (2015) Towards novel wound dressings: antibacterial properties of zinc oxide nanoparticles and electrospun fiber mats of zinc oxide nanoparticle/poly (vinyl alcohol) hybrids. J Polym Eng 35(6):575–586

    Article  CAS  Google Scholar 

  80. Ottone C, Rivera VF, Fontana M et al (2014) Ultralong and mesoporous ZnO and γ-Al2O3 oriented nanowires obtained by template-assisted hydrothermal approach. J Mater Sci Technol 30(12):1167–1173

    Article  CAS  Google Scholar 

  81. Dumontel B, Canta M, Engelke H et al (2017) Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer. J Mater Chem B 5(44):8799–8813. https://doi.org/10.1039/c7tb02229h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ahmed S, Chaudhry SA et al (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B 166:272–284. https://doi.org/10.1016/j.jphotobiol.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  83. Hajipour MJ, Fromm KM, Ashkarran AA et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  84. Chupani L, Zuskova E, Niksirat H et al (2017) Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Sci Total Environ 579:1504–1511. https://doi.org/10.1016/j.scitotenv.2016.11.154

    Article  CAS  PubMed  Google Scholar 

  85. Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence 2(5):395–401. https://doi.org/10.4161/viru.2.5.17035

    Article  PubMed  Google Scholar 

  86. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145. https://doi.org/10.1016/j.jconrel.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  87. Steffy K, Shanthi G, Maroky AS et al (2018) Enhanced antibacterial effects of green synthesized ZnO NPs using Aristolochia indica against multi-drug resistant bacterial pathogens from Diabetic Foot Ulcer. J Infect Public Health 11(4):463–471. https://doi.org/10.1016/j.jiph.2017.10.006

    Article  PubMed  Google Scholar 

  88. Vinotha V, Iswarya A, Thaya R et al (2019) Synthesis of ZnO nanoparticles using insulin-rich leaf extract: anti-diabetic, antibiofilm and anti-oxidant properties. J Photochem Photobiol B 197:111541. https://doi.org/10.1016/j.jphotobiol.2019.111541

    Article  CAS  PubMed  Google Scholar 

  89. Tavakoli S, Mokhtari H, Kharaziha M et al (2020) A multifunctional nanocomposite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for diabetic wounds. Mater Sci Eng C Mater Biol Appl 111:110837. https://doi.org/10.1016/j.msec.2020.110837

    Article  CAS  PubMed  Google Scholar 

  90. Soenen SJ, Parak WJ, Rejman J et al (2015) (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115(5):2109–2135. https://doi.org/10.1021/cr400714j

    Article  CAS  PubMed  Google Scholar 

  91. Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30(3):245–257. https://doi.org/10.1055/s-0030-1255354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bratton DL, Henson PM (2011) Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 32(8):350–357. https://doi.org/10.1016/j.it.2011.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Krzyszczyk P, Schloss R, Palmer A et al (2018) The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol 9:419. https://doi.org/10.3389/fphys.2018.00419

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shen T, Dai K, Yu Y et al (2020) Sulfated chitosan rescues dysfunctional macrophages and accelerates wound healing in diabetic mice. Acta Biomater 117:192–203. https://doi.org/10.1016/j.actbio.2020.09.035

    Article  CAS  PubMed  Google Scholar 

  95. Yang H, Song L, Sun B et al (2021) Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Mater Today Bio 12:100139. https://doi.org/10.1016/j.mtbio.2021.100139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xia H, Dong Z, Tang Q et al (2023) Glycopeptide-based multifunctional hydrogels promote diabetic wound healing through ph regulation of microenvironment. Adv Funct Mater. https://doi.org/10.1002/adfm.202215116

    Article  Google Scholar 

  97. Wong SL, Demers M, Martinod K et al (2015) Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 21(7):815–819. https://doi.org/10.1038/nm.3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yuan Y, Fan D, Shen S et al (2022) An M2 macrophage-polarized anti-inflammatory hydrogel combined with mild heat stimulation for regulating chronic inflammation and impaired angiogenesis of diabetic wounds. Chem Eng J 433:133859

    Article  CAS  Google Scholar 

  99. Soehnlein O, Steffens S, Hidalgo A et al (2017) Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 17(4):248–261. https://doi.org/10.1038/nri.2017.10

    Article  CAS  PubMed  Google Scholar 

  100. Karima M, Kantarci A, Ohira T et al (2005) Enhanced superoxide release and elevated protein kinase C activity in neutrophils from diabetic patients: association with periodontitis. J Leukoc Biol 78(4):862–870. https://doi.org/10.1189/jlb.1004583

    Article  CAS  PubMed  Google Scholar 

  101. Kaur T, Dumoga S, Koul V et al (2020) Modulating neutrophil extracellular traps for wound healing. Biomater Sci 8(11):3212–3223. https://doi.org/10.1039/d0bm00355g

    Article  CAS  PubMed  Google Scholar 

  102. Hyun SW, Kim J, Jo K et al (2018) Aster koraiensis extract improves impaired skin wound healing during hyperglycemia. Integr Med Res 7(4):351–357. https://doi.org/10.1016/j.imr.2018.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li N, Yang L, Pan C et al (2020) Naturally-occurring bacterial cellulose-hyperbranched cationic polysaccharide derivative/MMP-9 siRNA composite dressing for wound healing enhancement in diabetic rats. Acta Biomater 102:298–314. https://doi.org/10.1016/j.actbio.2019.11.005

    Article  PubMed  Google Scholar 

  104. Zhou W, Duan Z, Zhao J et al (2022) Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact Mater 17:1–17. https://doi.org/10.1016/j.bioactmat.2022.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Walton DM, Minton SD, Cook AD (2019) The potential of transdermal nitric oxide treatment for diabetic peripheral neuropathy and diabetic foot ulcers. Diabetes Metab Syndr 13(5):3053–3056. https://doi.org/10.1016/j.dsx.2018.07.003

    Article  PubMed  Google Scholar 

  106. Ahmed R, Augustine R, Chaudhry M et al (2022) Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: state of the art and recent trends. Biomed Pharmacother 149:112707. https://doi.org/10.1016/j.biopha.2022.112707

    Article  CAS  PubMed  Google Scholar 

  107. Suschek CV, Feibel D, von Kohout M et al (2022) Enhancement of nitric oxide bioavailability by modulation of cutaneous nitric oxide stores. Biomedicines 10(9):2124. https://doi.org/10.3390/biomedicines10092124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nathan CF, Hibbs JB Jr (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3(1):65–70. https://doi.org/10.1016/0952-7915(91)90079-g

    Article  CAS  PubMed  Google Scholar 

  109. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87(2):682–685. https://doi.org/10.1073/pnas.87.2.682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Coneski PN, Schoenfisch MH (2012) Nitric oxide release: part III. Meas report Chem Soc Rev 41(10):3753–3758. https://doi.org/10.1039/c2cs15271a

    Article  CAS  Google Scholar 

  111. Neufeld BH, Reynolds MM (2016) Critical nitric oxide concentration for Pseudomonas aeruginosa biofilm reduction on polyurethane substrates. Biointerphases 11(3):031012. https://doi.org/10.1116/1.4962266

    Article  CAS  PubMed  Google Scholar 

  112. Kreuger MR, Tames DR, Mariano M (1998) Expression of NO-synthase in cells of foreign-body and BCG-induced granulomata in mice: influence of L-NAME on the evolution of the lesion. Immunology 95(2):278–282. https://doi.org/10.1046/j.1365-2567.1998.00542.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Krischel V, Bruch-Gerharz D, Suschek C et al (1998) Biphasic effect of exogenous nitric oxide on proliferation and differentiation in skin derived keratinocytes but not fibroblasts. J Invest Dermatol 111(2):286–291. https://doi.org/10.1046/j.1523-1747.1998.00268.x

    Article  CAS  PubMed  Google Scholar 

  114. Howdieshell TR, Webb WL, Sathyanarayana MD et al (2003) Inhibition of inducible nitric oxide synthase results in reductions in wound vascular endothelial growth factor expression, granulation tissue formation, and local perfusion. Surgery 133(5):528–537. https://doi.org/10.1067/msy.2003.128

    Article  PubMed  Google Scholar 

  115. Zhao Y, Luo L, Huang L et al (2022) In situ hydrogel capturing nitric oxide microbubbles accelerates the healing of diabetic foot. J Control Release 350:93–106. https://doi.org/10.1016/j.jconrel.2022.08.018

    Article  CAS  PubMed  Google Scholar 

  116. Tu C, Lu H, Zhou T et al (2022) Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials 286:121597. https://doi.org/10.1016/j.biomaterials

    Article  CAS  PubMed  Google Scholar 

  117. Ando A, Miyamoto M, Saito N et al (2021) Small fibre neuropathy is associated with impaired vascular endothelial function in patients with type 2 diabetes. Front Endocrinol (Lausanne) 12:653277. https://doi.org/10.3389/fendo.2021.653277

    Article  PubMed  Google Scholar 

  118. Li L, Yang Y, Bai J et al (2022) Impaired vascular endothelial function is associated with peripheral neuropathy in patients with type 2 diabetes. Diabetes Metab Syndr Obes 15:1437–1449. https://doi.org/10.2147/DMSO.S352316

    Article  PubMed  PubMed Central  Google Scholar 

  119. den Dekker A, Davis FM, Kunkel SL et al (2019) Targeting epigenetic mechanisms in diabetic wound healing. Transl Res 204:39–50. https://doi.org/10.1016/j.trsl.2018.10.001

    Article  CAS  Google Scholar 

  120. Veves A, Akbari CM, Primavera J et al (1998) Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes 47(3):457–463. https://doi.org/10.2337/diabetes.47.3.457

    Article  CAS  PubMed  Google Scholar 

  121. DiPietro LA (2016) Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 100(5):979–984. https://doi.org/10.1189/jlb.4MR0316-102R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Guan Y, Niu H, Liu Z et al (2021) Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci Adv 7(35):eabj0153. https://doi.org/10.1126/sciadv.abj0153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jee JP, Pangeni R, Jha SK et al (2019) Preparation and in vivo evaluation of a topical hydrogel system incorporating highly skin-permeable growth factors, quercetin, and oxygen carriers for enhanced diabetic wound-healing therapy. Int J Nanomedicine 14:5449–5475. https://doi.org/10.2147/IJN.S213883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhu S, Zhao B, Li M et al (2023) Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact Mater 26:306–320

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen B, Zhang H, Qiu J et al (2022) Mechanical force induced self-assembly of chinese herbal hydrogel with synergistic effects of antibacterial activity and immune regulation for wound healing. Small 18(21):e2201766. https://doi.org/10.1002/smll.202201766

    Article  CAS  PubMed  Google Scholar 

  126. Ning S, Zang J, Zhang B et al (2022) Botanical drugs in traditional chinese medicine with wound healing properties. Front Pharmacol 13:885484. https://doi.org/10.3389/fphar.2022.885484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li J, Luo J, Chai Y et al (2021) Hypoglycemic effect of Taraxacum officinale root extract and its synergism with Radix Astragali extract. Food Sci Nutr 9(4):2075–2085. https://doi.org/10.1002/fsn3.2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Luo X, Huang P, Yuan B et al (2016) Astragaloside IV enhances diabetic wound healing involving upregulation of alternatively activated macrophages. Int Immunopharmacol 35:22–28. https://doi.org/10.1016/j.intimp.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  129. Zhao B, Zhang X, Han W et al (2017) Wound healing effect of an Astragalus membranaceus polysaccharide and its mechanism. Mol Med Rep 15(6):4077–4083. https://doi.org/10.3892/mmr.2017.6488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Peng LH, Chen X, Chen L et al (2012) Topical astragaloside IV-releasing hydrogel improves healing of skin wounds in vivo. Biol Pharm Bull 35(6):881–888. https://doi.org/10.1248/bpb.35.881

    Article  CAS  PubMed  Google Scholar 

  131. He X, Wang X, Fang J et al (2017) Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J Ethnopharmacol 195:20–38. https://doi.org/10.1016/j.jep.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  132. Zhao Y, Wang Q, Yan S et al (2021) Bletilla striata polysaccharide promotes diabetic wound healing through inhibition of the NLRP3 inflammasome. Front Pharmacol 12:659215. https://doi.org/10.3389/fphar.2021.659215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang P, He L, Zhang J et al (2020) Preparation of novel berberine nano-colloids for improving wound healing of diabetic rats by acting Sirt1/NF-kappaB pathway. Colloids Surf B Biointerfaces 187:110647. https://doi.org/10.1016/j.colsurfb.2019.110647

    Article  CAS  PubMed  Google Scholar 

  134. Xu N, Wang L, Guan J et al (2018) Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int J Biol Macromol 117:102–107. https://doi.org/10.1016/j.ijbiomac.2018.05.066

    Article  CAS  PubMed  Google Scholar 

  135. Xia S, Weng T, Jin R et al (2022) Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds. Burns Trauma 10:tkac001. https://doi.org/10.1093/burnst/tkac001

    Article  PubMed  PubMed Central  Google Scholar 

  136. Rodriguez-Acosta H, Tapia-Rivera JM, Guerrero-Guzman A et al (2022) Chronic wound healing by controlled release of chitosan hydrogels loaded with silver nanoparticles and calendula extract. J Tissue Viability 31(1):173–179. https://doi.org/10.1016/j.jtv.2021.10.004

    Article  PubMed  Google Scholar 

  137. Gao SQ, Chang C, Li JJ et al (2018) Co-delivery of deferoxamine and hydroxysafflor yellow A to accelerate diabetic wound healing via enhanced angiogenesis. Drug Deliv 25(1):1779–1789. https://doi.org/10.1080/10717544.2018.1513608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu J, Qu M, Wang C et al (2022) A dual-cross-linked hydrogel patch for promoting diabetic wound healing. Small 18(17):e2106172. https://doi.org/10.1002/smll.202106172

    Article  CAS  PubMed  Google Scholar 

  139. Wang T, Liao Q, Wu Y et al (2020) A composite hydrogel loading natural polysaccharides derived from Periplaneta americana herbal residue for diabetic wound healing. Int J Biol Macromol 164:3846–3857. https://doi.org/10.1016/j.ijbiomac.2020.08.156

    Article  CAS  PubMed  Google Scholar 

  140. Shukla R, Kashaw SK, Jain AP et al (2016) Fabrication of Apigenin loaded gellan gum-chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int J Biol Macromol 91:1110–1119. https://doi.org/10.1016/j.ijbiomac.2016.06.075

    Article  CAS  PubMed  Google Scholar 

  141. Gan J, Liu C, Li H et al (2019) Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials 219:119340. https://doi.org/10.1016/j.biomaterials.2019.119340

    Article  CAS  PubMed  Google Scholar 

  142. Veerasubramanian PK, Thangavel P, Kannan R et al (2018) An investigation of konjac glucomannan-keratin hydrogel scaffold loaded with Avena sativa extracts for diabetic wound healing. Colloids Surf B Biointerfaces 165:92–102. https://doi.org/10.1016/j.colsurfb.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  143. Gharaboghaz MNZ, Farahpour MR, Saghaie S (2020) Topical co-administration of Teucrium polium hydroethanolic extract and Aloe vera gel triggered wound healing by accelerating cell proliferation in diabetic mouse model. Biomed Pharmacother 127:110189. https://doi.org/10.1016/j.biopha.2020.110189

    Article  CAS  PubMed  Google Scholar 

  144. Ponrasu T, Veerasubramanian PK, Kannan R et al (2018) Morin incorporated polysaccharide-protein (psyllium-keratin) hydrogel scaffolds accelerate diabetic wound healing in Wistar rats. RSC Adv 8(5):2305–2314. https://doi.org/10.1039/c7ra10334d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tottoli EM, Dorati R, Genta I et al (2020) Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12(8):735. https://doi.org/10.3390/pharmaceutics12080735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhao L, Niu L, Liang H et al (2017) pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl Mater Interfaces 9(43):37563–37574. https://doi.org/10.1021/acsami.7b09395

    Article  CAS  PubMed  Google Scholar 

  147. Zhu Y, Zhang J, Song J et al (2019) A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv Funct Mater 30(6):1905493. https://doi.org/10.1002/adfm.201905493

    Article  CAS  Google Scholar 

  148. Dong M, Mao Y, Zhao Z et al (2022) Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: in vitro and in vivo evaluations. Int Wound J 19(3):679–691. https://doi.org/10.1111/iwj.13665

    Article  PubMed  Google Scholar 

  149. Shi M, Zhang H, Song T et al (2019) Sustainable dual release of antibiotic and growth factor from pH-responsive uniform alginate composite microparticles to enhance wound healing. ACS Appl Mater Interfaces 11(25):22730–22744. https://doi.org/10.1021/acsami.9b04750

    Article  CAS  PubMed  Google Scholar 

  150. Liang Y, Zhao X, Hu T et al (2019) Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J Colloid Interface Sci 556:514–528. https://doi.org/10.1016/j.jcis.2019.08.083

    Article  CAS  PubMed  Google Scholar 

  151. Galkowska H, Wojewodzka U, Olszewski WL (2006) Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regen 14(5):558–565. https://doi.org/10.1111/j.1743-6109.2006.00155.x

    Article  PubMed  Google Scholar 

  152. Zarei F, Negahdari B, Eatemadi A (2018) Diabetic ulcer regeneration: stem cells, biomaterials, growth factors. Artif Cells Nanomed Biotechnol 46(1):26–32. https://doi.org/10.1080/21691401.2017.1304407

    Article  PubMed  Google Scholar 

  153. Xiong Y, Chen L, Liu P et al (2022) All-in-One: multifunctional hydrogel accelerates oxidative diabetic wound healing through timed-release of exosome and fibroblast growth factor. Small 18(1):e2104229. https://doi.org/10.1002/smll.202104229

    Article  CAS  PubMed  Google Scholar 

  154. Jeong S, Kim B, Park M et al (2020) Improved diabetic wound healing by EGF encapsulation in gelatin-alginate coacervates. Pharmaceutics 12(4):334. https://doi.org/10.3390/pharmaceutics12040334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang L, Shi Y, Li M et al (2021) Plasma exosomes loaded ph-responsive carboxymethylcellulose hydrogel promotes wound repair by activating the vascular endothelial growth factor signaling pathway in type 1 diabetic mice. J Biomed Nanotechnol 17(10):2021–2033. https://doi.org/10.1166/jbn.2021.3165

    Article  CAS  PubMed  Google Scholar 

  156. Banerjee A, Koul V, Bhattacharyya J (2021) Fabrication of in situ layered hydrogel scaffold for the co-delivery of PGDF-BB/Chlorhexidine to regulate proinflammatory cytokines, growth factors, and MMP-9 in a diabetic skin defect albino rat model. Biomacromol 22(5):1885–1900. https://doi.org/10.1021/acs.biomac.0c01709

    Article  CAS  Google Scholar 

  157. Yang X, Yang R, Chen M et al (2020) KGF-2 and FGF-21 poloxamer 407 hydrogel coordinates inflammation and proliferation homeostasis to enhance wound repair of scalded skin in diabetic rats. BMJ Open Diabetes Res Care 8(1):e001009. https://doi.org/10.1136/bmjdrc-2019-001009

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lan B, Zhang L, Yang L et al (2021) Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J Nanobiotechnology 19(1):130. https://doi.org/10.1186/s12951-021-00869-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. da Silva LP, Santos TC, Rodrigues DB et al (2017) Stem cell-containing hyaluronic acid-based spongy hydrogels for integrated diabetic wound healing. J Invest Dermatol 137(7):1541–1551. https://doi.org/10.1016/j.jid.2017.02.976

    Article  CAS  PubMed  Google Scholar 

  160. Wang H, Sun D, Lin W et al (2023) One-step fabrication of cell sheet-laden hydrogel for accelerated wound healing. Bioact Mater 28:420–431. https://doi.org/10.1016/j.bioactmat.2023.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wu X, Zhu H, Che J et al (2023) Stem cell niche-inspired microcarriers with ADSCs encapsulation for diabetic wound treatment. Bioact Mater 26:159–168. https://doi.org/10.1016/j.bioactmat.2023.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Shang L, Yu Y, Jiang Y et al (2023) Ultrasound-augmented multienzyme-like nanozyme hydrogel spray for promoting diabetic wound healing. ACS Nano 17(16):15962–15977. https://doi.org/10.1021/acsnano.3c04134

    Article  CAS  PubMed  Google Scholar 

  163. Qi X, Cai E, Xiang Y et al (2023) An immunomodulatory hydrogel by hyperthermia-assisted self-cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics. Adv Mater 35(48):e2306632. https://doi.org/10.1002/adma.202306632

    Article  CAS  PubMed  Google Scholar 

  164. Wenlong Li, Haoxiang C, Jingfeng C et al (2023) Poly(pentahydropyrimidine)-based hybrid hydrogel with synergistic antibacterial and pro-angiogenic ability for the therapy of diabetic foot ulcers. Adv Funct Mater 33:2303147. https://doi.org/10.1002/adfm.202303147

    Article  CAS  Google Scholar 

  165. Yang JM, Yang JH, Huang HT (2014) Chitosan/polyanion surface modification of styrene-butadiene-styrene block copolymer membrane for wound dressing. Mater Sci Eng C Mater Biol Appl 34:140–148. https://doi.org/10.1016/j.msec.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  166. Cidreira ACM, de Castro KC, Hatami T et al (2021) Cellulose nanocrystals-based materials as hemostatic agents for wound dressings: a review. Biomed Microdevices 23(4):43. https://doi.org/10.1007/s10544-021-00581-0

    Article  CAS  PubMed  Google Scholar 

  167. Varaprasad K, Jayaramudu T, Kanikireddy V et al (2020) Alginate-based composite materials for wound dressing application: A mini review. Carbohydr Polym 236:116025. https://doi.org/10.1016/j.carbpol.2020.116025

    Article  CAS  PubMed  Google Scholar 

  168. Fletcher J (2003) The benefits of using hydrocolloids. Nurs Times 99(21):57

    PubMed  Google Scholar 

  169. Graca MFP, Miguel SP, Cabral CSD et al (2020) Hyaluronic acid-Based wound dressings: a review. Carbohydr Polym 241:116364. https://doi.org/10.1016/j.carbpol.2020.116364

    Article  CAS  PubMed  Google Scholar 

  170. Chen Y, Wang X, Tao S et al (2023) Research advances in smart responsive-hydrogel dressings with potential clinical diabetic wound healing properties. Mil Med Res 10(1):37. https://doi.org/10.1186/s40779-023-00473-9

    Article  PubMed  PubMed Central  Google Scholar 

  171. Qi X, Xiang Y, Cai E et al (2023) Inorganic–organic hybrid nanomaterials for photothermal antibacterial therapy. Coord Chem Rev 496:215426. https://doi.org/10.1016/j.ccr.2023.215426

    Article  CAS  Google Scholar 

  172. Gao L, Li C, Huang W et al (2020) MXene/polymer membranes: synthesis, properties, and emerging applications. Chem Mater 32(5):1703–1747. https://doi.org/10.1021/acs.chemmater.9b04408

    Article  CAS  Google Scholar 

  173. Nunan R, Harding KG, Martin P (2014) Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech 7(11):1205–1213. https://doi.org/10.1242/dmm.016782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the National Natural Science Fund (NO:81903994), Youth Development of the First Affiliated Hospital of Anhui Medical University (NO:2793), the Key projects of the clinical research of the First Affiliated Hospital of Anhui Medical University (NO: LCYJ2021ZD005), the Peak Discipline Construction Project of School of Public Health, Anhui Medical University (2021, 2022), Anhui Medical University College Students Innovation and Entrepreneurship Project (Provincial Project, 2022).

Author information

Authors and Affiliations

Authors

Contributions

The authors’ responsibilities were as follows: Jie zhao completed the collection and analysis of relevant literature and the preparation of the first draft of the thesis; Jie liu participated in graphics. Yuxin Hu and Wanxuan Hu participated in the analysis and collation of the literature. Juan Wei, Haisheng Qian and Yexiang Sun are the project creators and principals, and Yexiang Sun critically revised the manuscript for intellectual content, guiding the paper writing. All authors read and agreed to the final text.

Corresponding authors

Correspondence to Jie Zhao, Juan Wei, Haisheng Qian or Yexiang Sun.

Ethics declarations

Competing interest

The authors report no declarations of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Liu, J., Hu, Y. et al. Research advances in hydrogel-based wound dressings for diabetic foot ulcer treatment: a review. J Mater Sci 59, 8059–8084 (2024). https://doi.org/10.1007/s10853-024-09493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09493-9

Navigation