Skip to main content

Advertisement

Log in

Microstructural characterization and mechanical properties of a Q550W weathering steel welded joint under different heat inputs

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal active gas arc (MAG) was applied to weld a hot-rolled weathering steel, three heat inputs (5100, 6000 and 7200 J/cm) were used by changing the welding speed. The effects of heat input on the microstructure on the welded joint were investigated by optical microscope (OM), field emission scanning electron microscope (FESEM), electron-backscattering diffraction (EBSD). Tensile and hardness tests were also carried out in this paper. The results indicate that the yield strength decreases with the increase in heat input and all the specimen fractured at the mixed-grained heat affected zone (MGHAZ). The MGHAZ consist of polygonal and equiaxed ferrite. The yield strength decreases by 59 MPa when the heat input increases from 5100 to 7200 J/cm, which is attributed to the weakening of grain refinement strengthening and dislocation strengthening. The plasticity also decreases by 3.6% with the increase in heat input. The microstructure is relatively uniform when the heat input is 5100 J/cm. However, the original microstructure become coarsen with the increase in heat input, resulting the non-uniform microstructure at higher heat input. The 5100 J/cm specimen could deform more coordinately during tensile process, so the specimen has highest plasticity among three heat inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Morcillo M, Díaz I, Chico B, Cano H, de la Fuente D (2014) Weathering steels: From empirical development to scientific design. A review Corros Sci 83:6–31. https://doi.org/10.1016/j.corsci.2014.03.006

    Article  CAS  Google Scholar 

  2. Gao XL, Zhu MY, Sun C, Fu GQ (2013) Dynamic recrystallization behavior and microstructure evolution of bridge weathering steel in austenite region. Steel Res Int 84(4):377–386. https://doi.org/10.1002/srin.201200221

    Article  CAS  Google Scholar 

  3. Jiang ML, Yu W (2019) Study on Continuous Cooling Transformation and Microstructure of 500 MPa Grade Steel for Railway Freight Car Body. Mater Sci Forum 944:272–277. https://doi.org/10.4028/www.scientific.net/MSF.944.272

    Article  Google Scholar 

  4. Cheng J, Qing JS, Guo YH, Shen HF (2019) High-strength weathering steels obtained using bainite matrix and nanoscale co-precipitation. Mater Lett 236:307–311. https://doi.org/10.1016/j.matlet.2018.10.076

    Article  CAS  Google Scholar 

  5. Cui JJ, Zhu WT, Chen ZY, Chen LQ (2020) Microstructural characteristics and impact fracture behaviors of a novel high-strength low-carbon bainitic steel with different reheated coarse-grained heat-affected zones. Metall Mater Trans A 51(12):1–11. https://doi.org/10.1007/s11661-020-06017-3

    Article  CAS  Google Scholar 

  6. Moon J, Lee CN, Jo HH, Kim SD, Hong HU, Chung JH, Lee BH (2022) Microstructure and high-temperature strength in the weld coarse-grained heat-affected zone of fire-resistant steels and the effects of Mo and Nb additions. Metal Mater Int 28(4):966–974. https://doi.org/10.1007/s12540-020-00947-8

    Article  CAS  Google Scholar 

  7. Zhen S, Duan ZZ, Sun DQ, Li YX, Gao DD, Li HM (2014) Study on microstructures and mechanical properties of laser-arc hybrid welded S355J2W+ N steel. Opt Laser Technol 59:11–18. https://doi.org/10.1016/j.optlastec.2013.11.021

    Article  CAS  Google Scholar 

  8. Kawakubo T, Nagira T, Ushioda K, Fujii H (2021) Friction stir welding of high phosphorus weathering steel-weldabilities, microstructural evolution and mechanical properties. ISIJ Int 61(7):2150–2158. https://doi.org/10.2355/isijinternational.ISIJINT-2021-007

    Article  CAS  Google Scholar 

  9. Kawakubo T, Ushioda K, Fujii H (2022) Grain boundary segregation and toughness of friction-stir-welded high-phosphorus weathering steel. Mater Sci Eng A 832:142350. https://doi.org/10.1016/j.msea.2021.142350

    Article  CAS  Google Scholar 

  10. Zhao DW, Bezgans Y, Vdonin N, Kvashnin V (2021) Mechanical performance and microstructural characteristic of gas metal arc welded A606 weathering steel joints. Int J Adv Manuf Technol 119(3):1921–1932. https://doi.org/10.1007/s00170-021-08383-7

    Article  Google Scholar 

  11. Wang XN, Zhang SH, Zhou J, Zhang M, Chen CJ, Misra RDK (2017) Effect of heat input on microstructure and properties of hybrid fiber laser-arc weld joints of the 800MPa hot-rolled Nb-Ti-Mo microalloyed steels. Opt Laser Technol 91:86–96. https://doi.org/10.1016/j.optlaseng.2016.11.010

    Article  Google Scholar 

  12. Wen CF, Wang ZD, Deng XT, Wang GD, Misra RDK (2018) Effect of heat input on the microstructure and mechanical properties of low alloy ultra-high strength structural steel welded joint. Steel Res Int 89(6):1700500. https://doi.org/10.1002/srin.201700500

    Article  CAS  Google Scholar 

  13. Wang HB, Wang FL, Shi GH, Sun Y, Liu JC, Wang QF, Zhang FC (2019) Effect of welding heat input on microstructure and impact toughness in CGHAZ of X100Q steel. J Iron Steel Res Int 26(6):637–646. https://doi.org/10.1007/s42243-019-00271-5

    Article  CAS  Google Scholar 

  14. Deepak JR, Raja VKB, Arputhabalan JJ, Kumar GRY, Thomas SK (2019) Experimental investigation of corten A588 filler rod for welding weathering steel. Mater Today Proc 16:1233–1238. https://doi.org/10.1016/j.matpr.2019.05.219

    Article  CAS  Google Scholar 

  15. Zhang Y, Shi GH, Sun R, Guo K, Zhang CL, Wang QF (2019) Effect of Si content on the microstructures and the impact properties in the coarse-grained heat-affected zone (CGHAZ) of typical weathering steel. Mater Sci Eng A 762:138082. https://doi.org/10.1016/j.msea.2019.138082

    Article  CAS  Google Scholar 

  16. Lei JW, Wu KM, Li Y, Huo TP, Xie X, Misra RDK (2019) Effects of Zr addition on microstructure and toughness of simulated CGHAZ in high-strength low-alloy steels. J Iron Steel Res Int 26(10):1117–1125. https://doi.org/10.1007/s42243-019-00319-6

    Article  CAS  Google Scholar 

  17. You Y, Shang CJ, Subramanian S (2014) Effect of Ni addition on toughness and microstructure evolution in coarse grain heat affected zone. Metal Mater Int 20(4):659–668. https://doi.org/10.1007/s12540-014-4011-4

    Article  CAS  Google Scholar 

  18. Wang J, Lu SP, Dong WC, Li DZ, Rong LJ (2014) Microstructural evolution and mechanical properties of heat affected zones for 9Cr2WVTa steels with different carbon contents. Mater Des 64:550–558. https://doi.org/10.1016/j.matdes.2014.08.018

    Article  CAS  Google Scholar 

  19. Odebiyi OS, Adedayo SM, Tunji LA, Onuorah MO (2019) A review of weldability of carbon steel in arc-based welding processes. Cogent Eng 6(1):1609180. https://doi.org/10.1080/23311916.2019.1609180

    Article  Google Scholar 

  20. Wang SZ, Gao ZJ, Wu GL, Mao XP (2022) Titanium microalloying of steel: a review of its effects on processing, microstructure and mechanical properties. Int J Miner Metall Mater 29(4):645–661. https://doi.org/10.1007/s12613-021-2399-7

    Article  CAS  Google Scholar 

  21. Park JY, Ahn YS (2015) Effect of Ni and Mn on the mechanical properties of 22Cr micro-duplex stainless steel. Acta Metall Sin 28(1):32–38. https://doi.org/10.1007/s40195-014-0162-z

    Article  CAS  Google Scholar 

  22. Zhang H, Zhang CH, Wang Q, Wu CL, Zhang S, Chen J, Ao A (2018) Effect of Ni content on stainless steel fabricated by laser melting deposition. Opt Laser Technol 101:363–371. https://doi.org/10.1016/j.optlastec.2017.11.032

    Article  CAS  Google Scholar 

  23. Li DL, Fu GQ, Zhu MY, Li Q, Yin CX (2018) Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere. Int J Miner Metall Mater 25(3):325–338. https://doi.org/10.1007/s12613-018-1576-9

    Article  CAS  Google Scholar 

  24. Lan LY, Qiu CL, Zhao DW, Gao XH, Du LX (2012) Analysis of martensite–austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel. J Mater Sci 47(11):4732–4742. https://doi.org/10.1007/s10853-012-6346-x

    Article  CAS  Google Scholar 

  25. Amer AE, Koo MY, Lee KH, Kim SH, Hong SH (2010) Effect of welding heat input on microstructure and mechanical properties of simulated HAZ in Cu containing microalloyed steel. J Mater Sci 45(5):1248–1254. https://doi.org/10.1007/s10853-009-4074-7

    Article  CAS  Google Scholar 

  26. Lee WH (2007) Weld metal hydrogen-assisted cracking in thick steel plate weldments. Mater Sci Eng A 445:328–335. https://doi.org/10.1016/j.msea.2006.09.046

    Article  CAS  Google Scholar 

  27. Venkatesan MV, Murugan N, Sam S, Albert SK (2014) Effect of heat input on macro, micro and tensile properties of flux cored arc welded ferritic stainless steel joints. Trans Indian Inst Met 67(3):375–383. https://doi.org/10.1007/s12666-013-0358-3

    Article  CAS  Google Scholar 

  28. Siltanen J, Tihinen S, Komi J (2015) Laser and laser gas-metal-arc hybrid welding of 960 MPa direct-quenched structural steel in a butt joint configuration. J Laser Appl 27(S2):S29007. https://doi.org/10.2351/1.4906386

    Article  Google Scholar 

  29. Olasolo M, Uranga P, Rodriguez-Ibabe JM, Lopez B (2011) Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel. Mater Sci Eng A 528(6):2559–2569. https://doi.org/10.1016/j.msea.2010.11.078

    Article  CAS  Google Scholar 

  30. Lan LY, Qiu CL, Zhao DW, Gao XH, Du LX (2013) Effect of reheat temperature on continuous cooling bainite transformation behavior in low carbon microalloyed steel. J Mater Sci 48(12):4356–4364. https://doi.org/10.1007/s10853-013-7251-7

    Article  CAS  Google Scholar 

  31. Sun Q, Di HS, Li JC, Wu BQ, Misra RDK (2016) A comparative study of the microstructure and properties of 800 MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding. Mater Sci Eng A 669:150–158. https://doi.org/10.1016/j.msea.2016.05.079

    Article  CAS  Google Scholar 

  32. Zhou Y, Chen SY, Chen XT, Cui T, Liang J, Liu CS (2019) The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power. Mater Sci Eng A 742:150–161. https://doi.org/10.1016/j.msea.2018.10.092

    Article  CAS  Google Scholar 

  33. Tang G, Zhao X, Li RD, Liang Y, Jiang YS, Chen H (2019) Microstructure and properties of laser-arc hybrid welding thick bainitic steel joints with different arc position. Mater Res Express 6(7):076547. https://doi.org/10.1088/2053-1591/ab1557

    Article  CAS  Google Scholar 

  34. Wang HH, Qin ZP, Wan XL, Wei R, Wu KM, Misra D (2017) Continuous cooling transformation behavior and impact toughness in heat-affected zone of Nb-containing fire-resistant steel. Metal Mater Int 23(5):848–854. https://doi.org/10.1007/s12540-017-6776-8

    Article  CAS  Google Scholar 

  35. Eskandari M, Mohtadi-Bonab MA, Zarei-Hanzaki A, Szpunar JA, Basu R (2019) Texture and microstructure development of tensile deformed high-Mn steel during early stage of recrystallization. Phys Metal Metallogr 120(1):32–40. https://doi.org/10.1134/S0031918X19010034

    Article  CAS  Google Scholar 

  36. Gao ZJ, Li JY, Feng ZH, Wang YD (2019) Influence of hot rolling on the microstructure of lean duplex stainless steel 2101. Int J Miner Metall Mater 26(10):1266–1273. https://doi.org/10.1007/s12613-019-1841-6

    Article  CAS  Google Scholar 

  37. Zhou LY, Jiang B, Cui TH, Zhang D, He JZ, Liu YZ (2014) Effect of strengthening phase on deformation behavior during uniaxial tension of hot-rolled dual phase steel. J Iron Steel Res Int 21(12):1111–1115. https://doi.org/10.1016/S1006-706X(14)60191-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from Maanshan Iron & Steel Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Fu, C., Qin, Z. et al. Microstructural characterization and mechanical properties of a Q550W weathering steel welded joint under different heat inputs. J Mater Sci 57, 16528–16540 (2022). https://doi.org/10.1007/s10853-022-07688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07688-6

Navigation