Skip to main content

Advertisement

Log in

Energy conversion and optical applications of MXene quantum dots

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanotechnologies known as a developing applied science have significant global socioeconomic values and many advantages obtained from nanoscale materials. Its applications can have significant effects on the performance of organizations. The advance of two-dimensional (2D) MXene-derived QDs (MQDs) is currently in the initial stages. Scholars have shown distinguished optical, electronic, thermal and mechanical attributes by surface chemistry and versatile transition metal. In this field of study, many applications are introduced like energy electromagnetic interference shielding, storage, sensors, transparent electrodes, photothermal therapy, catalysis and so on. The vast range of optical absorption attributes of MQDs along with high electronic conductivity has been detected to be key attributes because of their achievement in the mentioned usages. Currently, relatively little materials are highly known because of their basic electronic and optical properties, which can limit their full potentials. From a theoretical and experimental point of view, in this work, electronic and optical properties of MQDs along with applications corresponding to those properties were evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Abbreviations

QDs:

Quantum dots

MQDs:

MXene-based quantum dots

N-MQDs:

N-doped Ti3C2 quantum dots

g-C3N4 :

Graphite carbon nitride

BPQDs:

Black phosphorus quantum dots

PL:

Photoluminescence

ECL:

Electrochemiluminescence

IFE:

Inner filter effect

PLQY:

Photoluminescence quantum yield

DADS:

Decay-associated difference spectra

LEDs:

Light-emitting diodes

LIB:

Lithium-ion battery

TPFL:

Two-photon fluorescence

ESC:

Embryonic stem cells

PEI:

Polyethylenimine

PLL:

ε-Poly-L-lysine

ALP:

Alkaline phosphatase

MWCNTs:

Multiwall carbon nanotubes

IL:

Ionic liquid

ORR:

Oxygen reduction reaction

OER:

Oxygen evolution reaction

MOR:

Methanol oxidation reaction

IOPCs:

Inverse opal photonic crystals

PEC:

Photoelectrochemical

QY:

Quantum yield

PLQY:

Photoluminescent quantum yield

BP QDs:

Black phosphorus quantum dots

HER/OER:

Hydrogen and oxygen evolution reactions

DMES:

Dual-model energy storage

DFT:

Density functional theory

UA:

Uric acid

GSH:

Glutathione

HRP:

Horseradish peroxidase

CE:

Counter electrode

PCE:

Photoelectric conversion efficiency

NIR:

Near infrared

References

  1. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2020) The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25(1):112. https://doi.org/10.3390/molecules25010112

    Article  CAS  Google Scholar 

  2. Livingston A, Trout BL, Horvath IT, Johnson MD, Vaccaro L, Coronas J, Hayler JD (2020) Challenges and directions for green chemical engineering-role of nanoscale materials. Sustainable nanoscale engineering. Elsevier, pp 1–18. https://doi.org/10.1016/B978-0-12-814681-1.00001-1

    Chapter  Google Scholar 

  3. Serrà A, Artal R, García-Amorós J, Sepúlveda B, Gómez E, Nogués J, Philippe L (2020) Hybrid Ni@ ZnO@ ZnS-microalgae for circular economy: a smart route to the efficient integration of solar photocatalytic water decontamination and bioethanol production. Adv Sci 7(3):1902447. https://doi.org/10.1002/advs.201902447

    Article  CAS  Google Scholar 

  4. DeLong RK, Dean JM, Glaspell GP, Jaberi-Douraki M, Ghosh KC, Davis D, Middaugh CR (2020) Amino/amido conjugates form to nanoscale cobalt physiometacomposite (PMC) materials functionally delivering nucleic acid therapeutic to the nucleus enhancing anticancer activity via Ras-targeted protein interference. ACS Appl Bio Mater 3:175–179. https://doi.org/10.1021/acsabm.9b00798

    Article  CAS  Google Scholar 

  5. Park W, Müller S, Baumann RP, Becker S, Hwang B (2020) Surface energy characterization of nanoscale metal using quantitative nanomechanical characterization of atomic force microscopy. Appl Surf Sci 507:145041. https://doi.org/10.1016/j.apsusc.2019.145041

    Article  CAS  Google Scholar 

  6. Yanagisawa S, Hamada I (2020) Nanoscale first-principles electronic structure simulations of materials relevant to organic electronics. Theoretical chemistry for advanced nanomaterials. Springer, Singapore, pp 89–131. https://doi.org/10.1007/978-981-15-0006-0_4

    Chapter  Google Scholar 

  7. Adir O, Poley M, Chen G, Froim S, Krinsky N, Shklover J, Schroeder A (2020) Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv Mater 32(13):1901989. https://doi.org/10.1002/adma.201901989

    Article  CAS  Google Scholar 

  8. Grasso G, Zane D, Dragone R (2020) Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials 10(1):11. https://doi.org/10.3390/nano10010011

    Article  CAS  Google Scholar 

  9. Yazdanparast S, Soltanmohammad S, Fash-White A, Tucker GJ, Brennecka GL (2020) Synthesis and surface chemistry of 2D TiVC solid-solution MXenes. ACS Appl Mater Interfaces 12(17):20129–20137. https://doi.org/10.1021/acsami.0c03181

    Article  CAS  Google Scholar 

  10. Bu F, Zagho MM, Ibrahim Y, Ma B, Elzatahry A, Zhao D (2020) Porous MXenes: synthesis, structures, and applications. Nano Today 30:100803. https://doi.org/10.1016/j.nantod.2019.100803

    Article  CAS  Google Scholar 

  11. Awasthi GP, Maharjan B, Shrestha S, Bhattarai DP, Yoon D, Park CH, Kim CS (2020) Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone–MXene electrospun fibers. Colloids Surf A 586:124282. https://doi.org/10.1016/j.colsurfa.2019.124282

    Article  CAS  Google Scholar 

  12. Gao Y, Cao Y, Zhuo H, Sun X, Gu Y, Zhuang G, Wang JG (2020) Mo2TiC2 MXene: a promising catalyst for electrocatalytic ammonia synthesis. Catal Today 339:120–126. https://doi.org/10.1016/j.cattod.2018.12.029

    Article  CAS  Google Scholar 

  13. Xu F, Zhang D, Liao Y, Wang G, Shi X, Zhang H, Xiang Q (2020) Synthesis and photocatalytic H2-production activity of plasma-treated Ti3C2Tx MXene modified graphitic carbon nitride. J Am Ceram Soc 103(2):849–858. https://doi.org/10.1111/jace.16798

    Article  CAS  Google Scholar 

  14. Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum MW (2020) 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6(3):616–630. https://doi.org/10.1016/j.chempr.2020.01.019

    Article  CAS  Google Scholar 

  15. Limbu TB, Chitara B, Orlando JD, Cervantes MYG, Kumari S, Li Q, Yan F (2020) Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity. J Mater Chem C 8(14):4722–4731. https://doi.org/10.1039/C9TC06984D

    Article  CAS  Google Scholar 

  16. Sarycheva A, Gogotsi Y (2020) Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem Mater 32(8):3480–3488. https://doi.org/10.1021/acs.chemmater.0c00359

    Article  CAS  Google Scholar 

  17. Cai C, Wang R, Liu S, Yan X, Zhang L, Wang M, Jiao T (2020) Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities. Colloids Surf A 589:124468. https://doi.org/10.1016/j.colsurfa.2020.124468

    Article  CAS  Google Scholar 

  18. Han M, Shuck CE, Rakhmanov R, Parchment D, Anasori B, Koo CM, Gogotsi Y (2020) Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14:5008–5016. https://doi.org/10.1021/acsnano.0c01312

    Article  CAS  Google Scholar 

  19. Gao L, Li C, Huang W, Mei S, Lin H, Ou Q, Zhang H (2020) MXene/polymer membranes: synthesis, properties, and emerging applications. Chem Mater 32(5):1703–1747. https://doi.org/10.1021/acs.chemmater.9b04408

    Article  CAS  Google Scholar 

  20. Guan H, Zhao S, Wang H, Yan D, Wang M, Zang Z (2020) Room temperature synthesis of stable single silica-coated CsPbBr 3 quantum dots combining tunable red emission of Ag–In–Zn–S for High-CRI white light-emitting diodes. Nano Energy 67:104279. https://doi.org/10.1016/j.nanoen.2019.104279

    Article  CAS  Google Scholar 

  21. Chen G, Zhang Y, Li C, Wang Q (2020) Near infrared Ag2S quantum dots: synthesis, functionalization, and in vivo stem cell tracking applications. Near infrared-emitting nanoparticles for biomedical applications. Springer, Cham, pp 279–304. https://doi.org/10.1007/978-3-030-32036-2_11

    Chapter  Google Scholar 

  22. El-Hnayn R, Canabady-Rochelle L, Desmarets C, Balan L, Rinnert H, Joubert O, Schneider R (2020) One-step synthesis of diamine-functionalized graphene quantum dots from graphene oxide and their chelating and antioxidant activities. Nanomater 10(1):104. https://doi.org/10.3390/nano10010104

    Article  CAS  Google Scholar 

  23. Li S, Hsiao JC, Howes PD, deMello AJ (2020) Microfluidic tools for the synthesis of bespoke quantum dots. Nanotechnol Microfluidics. https://doi.org/10.1002/9783527818341.ch4

    Article  Google Scholar 

  24. Song X, Ma Z, Li L, Tian T, Yan Y, Su J, Xia C (2020) Aqueous synthesis of alloyed CdSexTe1-x colloidal quantum dots and their In-situ assembly within mesoporous TiO2 for solar cells. Sol Energy 196:513–520. https://doi.org/10.1016/j.solener.2019.12.049

    Article  CAS  Google Scholar 

  25. Ginterseder M, Franke D, Perkinson CF, Wang L, Hansen EC, Bawendi MG (2020) Scalable synthesis of InAs quantum dots mediated through indium redox chemistry. J Am Chem Soc 142(9):4088–4092. https://doi.org/10.1021/jacs.9b12350

    Article  CAS  Google Scholar 

  26. Rambabu D, Bhattacharyya S, Singh T, Chakravarthy ML (2020) Maji TK (2020) stabilization of MAPbBr 3 perovskite quantum dots on perovskite MOFs by a one-step mechanochemical synthesis. Inorg Chem 59:1436–1443. https://doi.org/10.1021/acs.inorgchem.9b03183

    Article  CAS  Google Scholar 

  27. Órdenes-Aenishanslins N, Anziani-Ostuni G, Monrás JP, Tello A, Bravo D, Toro-Ascuy D, Pérez-Donoso JM (2020) Bacterial synthesis of ternary cdsag quantum dots through cation exchange: tuning the composition and properties of biological nanoparticles for bioimaging and photovoltaic applications. Microorganisms 8(5):631. https://doi.org/10.3390/microorganisms8050631

    Article  CAS  Google Scholar 

  28. Zhang C, Ma Y, Zhang X, Abdolhosseinzadeh S, Sheng H, Lan W, Nüesch F (2020) Two-dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater 3(1):29–55

    Article  CAS  Google Scholar 

  29. Zhan X, Si C, Zhou J, Sun Z (2020) MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz 5:235–258. https://doi.org/10.1039/C9NH00571D

    Article  CAS  Google Scholar 

  30. Liu Y, Yu J, Guo D, Li Z, Su Y (2020) Ti3C2Tx MXene/graphene nanocomposites: synthesis and application in electrochemical energy storage. J Alloys Compd 815:152403. https://doi.org/10.1016/j.jallcom.2019.152403

    Article  CAS  Google Scholar 

  31. Wang H, Cui H, Song X, Xu R, Wei N, Tian J, Niu H (2020) Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal. J Colloid Interface Sci 561:46–57. https://doi.org/10.1016/j.jcis.2019.11.120

    Article  CAS  Google Scholar 

  32. Shuck CE, Sarycheva A, Anayee M, Levitt A, Zhu Y, Uzun S, Gogotsi Y (2020) Scalable synthesis of Ti3C2Tx MXene. Adv Eng Mater 22(3):1901241. https://doi.org/10.1002/adem.201901241

    Article  CAS  Google Scholar 

  33. Venkateshalu S, Grace AN (2020) MXenes-A new class of 2D layered materials: synthesis, properties, applications as supercapacitor electrode and beyond. Appl Mater Today 18:100509. https://doi.org/10.1016/j.apmt.2019.100509

    Article  Google Scholar 

  34. Syamsai R, Grace AN (2020) Synthesis, properties and performance evaluation of vanadium carbide MXene as supercapacitor electrodes. Ceram Int 46(4):5323–5330. https://doi.org/10.1016/j.ceramint.2019.10.283

    Article  CAS  Google Scholar 

  35. Li JY, Li YH, Zhang F, Tang ZR, Xu YJ (2020) Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl Catal B 269:118783. https://doi.org/10.1016/j.apcatb.2020.118783

    Article  CAS  Google Scholar 

  36. Jiang L, Duan J, Zhu J, Chen S, Antonietti M (2020) Iron-cluster-directed synthesis of 2D/2D Fe-N-C/MXene superlattice-like heterostructure with enhanced oxygen reduction electrocatalysis. ACS Nano 14(2):2436–2444. https://doi.org/10.1021/acsnano.9b09912

    Article  CAS  Google Scholar 

  37. Mubiayi KP, Neto DMG, Morais A, Nogueira HP, de Almeida STE, Mazon T, Freitas JN (2020) Microwave assisted synthesis of CuInGaSe2 quantum dots and spray deposition of their composites with graphene oxide derivatives. Mater Chem Phys 242:122449. https://doi.org/10.1016/j.matchemphys.2019.122449

    Article  CAS  Google Scholar 

  38. Huang M, Fang X, Qiu C, Huang F (2020) Aqueous synthesis of L-cysteine-modified cobalt-doped zinc selenide/zinc sulfide quantum dots with enhanced fluorescence. Spectrosc Lett 53:315–326. https://doi.org/10.1080/00387010.2020.1740277

    Article  CAS  Google Scholar 

  39. Kyobe JW, Khan MD, Kinunda G, Mubofu EB, Revaprasadu N (2020) Synthesis of CdTe quantum dots capped with castor oil using a hot injection solution method. Mat Sci Semicon Proc 106:104780. https://doi.org/10.1016/j.mssp.2019.104780

    Article  CAS  Google Scholar 

  40. Song Y, Tan J, Wang G, Gao P, Lei J, Zhou L (2020) Oxygen accelerated scalable synthesis of highly fluorescent sulfur quantum dots. Chem Sci 11:772–777. https://doi.org/10.1039/C9SC05019A

    Article  CAS  Google Scholar 

  41. Deng B, Zhu Y, Li J, Chen X, He K, Yang J, Xu X (2020) Low temperature synthesis of highly bright green emission CuInS2/ZnS quantum dots and its application in light-emitting diodes. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.155400

    Article  Google Scholar 

  42. Mahmoudabadi ZS, Rashidi A, Tavasoli A (2020) Synthesis of MoS2 quantum dots as a nanocatalyst for hydrodesulfurization of Naphtha: experimental and DFT study. J Environ Chem Eng 8(3):103736. https://doi.org/10.1016/j.jece.2020.103736

    Article  CAS  Google Scholar 

  43. Fu M, Mrziglod T, Luan W, Tu ST, Mleczko L (2020) Neural network modeling and simulation of the synthesis of CuInS2/ZnS quantum dots. Eng Rep 2(2):e12122. https://doi.org/10.1002/eng2.12122

    Article  CAS  Google Scholar 

  44. Prabhu SA, Kavithayeni V, Suganthy R, Geetha K (2020) Graphene quantum dots synthesis and energy application: a review. Carbon Lett. https://doi.org/10.1007/s42823-020-00154-w

    Article  Google Scholar 

  45. Siwatch P, Sharma K, Tripathi SK (2020) Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor. Electrochim Acta 329:135084. https://doi.org/10.1016/j.electacta.2019.135084

    Article  CAS  Google Scholar 

  46. Xia Y, Liu S, Wang K, Yang X, Lian L, Zhang Z, Song H (2020) Cation-exchange synthesis of highly monodisperse PbS quantum dots from ZnS nanorods for efficient infrared solar cells. Adv Funct Mater 30(4):1907379. https://doi.org/10.1002/adfm.201907379

    Article  CAS  Google Scholar 

  47. Wang ZQ, Zhang MJ, Hu XB, Dravid VP, Xu ZN, Guo GC (2020) CeO2- x quantum dots with massive oxygen vacancies as efficient catalysts for the synthesis of dimethyl carbonate. Chem Commun 56(3):403–406. https://doi.org/10.1039/C9CC07584D

    Article  CAS  Google Scholar 

  48. Wu FY, Cheng YS, Wang DM, Li ML, Lu WS, Xu XY, Wei XW (2020) Nitrogen-doped MoS2 quantum dots: Facile synthesis and application for the assay of hematin in human blood. Mater Sci Eng C 112:110898. https://doi.org/10.1016/j.msec.2020.110898

    Article  CAS  Google Scholar 

  49. Joo J, Choi Y, Suh YH, Lee CL, Bae J, Park J (2020) Synthesis and characterization of In1-xGaxP@ ZnS alloy core-shell type colloidal quantum dots. J Indust Eng Chem. https://doi.org/10.1016/j.jiec.2020.03.029

    Article  Google Scholar 

  50. Zhang S, Huang P, Wang J, Zhuang Z, Zhang Z, Han WQ (2020) Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders. J Phys Chem Lett 11(4):1247–1254. https://doi.org/10.1021/acs.jpclett.9b03682

    Article  CAS  Google Scholar 

  51. Singh S, Singh PK, Sharma JP, Kakroo S, Sonker R, Khan ZH (2020) Encompassing environment synthesis, characterization and photovoltaic utilization of cadmium sulphide quantum dots. Mater Today. https://doi.org/10.1016/j.matpr.2020.04.776

    Article  Google Scholar 

  52. Li Y, Ding L, Guo Y, Liang Z, Cui H, Tian J (2019) Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.9b14985

    Article  Google Scholar 

  53. Elumalai S, Yoshimura M, Ogawa M (2020) Simultaneous delamination and rutile formation on the surface of Ti3C2Tx MXene for copper adsorption. Chem Asian J 15(7):1044–1051. https://doi.org/10.1002/asia.202000090

    Article  CAS  Google Scholar 

  54. Baragau IA, Power NP, Morgan DJ, Heil T, Lobo RA, Roberts CS, Kellici S (2020) Continuous hydrothermal flow synthesis of blue-luminescent, excitation-independent N-doped carbon quantum dots as nanosensors. J Mater Chem A 8:3270–3279. https://doi.org/10.1039/C9TA11781D

    Article  CAS  Google Scholar 

  55. Yuan B, Cai X, Fang X, Wang D, Cao S, Zhu R, Liu J (2020) One-step synthesis of water-soluble quantum dots from AgS to AgInS2 QDs. Cryst Growth Des. https://doi.org/10.1021/acs.cgd.0c00108

    Article  Google Scholar 

  56. Mao H, Gu C, Yan S, Xin Q, Cheng S, Tan P, Huang W (2019) MXene quantum dot/polymer hybrid structures with tunable electrical conductance and resistive switching for nonvolatile memory devices. Adv Electron Mater. https://doi.org/10.1002/aelm.201900493

    Article  Google Scholar 

  57. Zhao Q, Liu L, Li S, Liu R (2019) Built-in electric field-assisted charge separation over carbon dots-modified Bi2WO6 nanoplates for photodegradation. Appl Surf Sci 465:164–171. https://doi.org/10.1016/j.apsusc.2018.09.168

    Article  CAS  Google Scholar 

  58. Liu H, Zhang X, Zhu Y, Cao B, Zhu Q, Zhang P, Chen R (2019) Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett 11(1):65. https://doi.org/10.1007/s40820-019-0296-7

    Article  CAS  Google Scholar 

  59. Xue Q, Zhang H, Zhu M, Pei Z, Li H, Wang Z, Du S (2017) Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 29(15):1604847. https://doi.org/10.1002/adma.201604847

    Article  CAS  Google Scholar 

  60. Feng Y, Zhou F, Deng Q, Peng C (2020) Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram Int 46(6):8320–8327. https://doi.org/10.1016/j.ceramint.2019.12.063

    Article  CAS  Google Scholar 

  61. Li X, Wen C, Yuan M, Sun Z, Wei Y, Ma L, Sun G (2020) Nickel oxide nanoparticles decorated highly conductive Ti3C2 MXene as cathode catalyst for rechargeable Li-O2 battery. J Alloy Compd. https://doi.org/10.1016/j.jallcom.2020.153803

    Article  Google Scholar 

  62. Al-antaki AHM, Alharbi TM, Kellici S, Power NP, Lawrance W, Raston CL (2020) Vortex fluidic mediated synthesis of TiO2 nanoparticle/MXene composites. Chem Nano Matt 6(4):657–662. https://doi.org/10.1002/cnma.201900779

    Article  CAS  Google Scholar 

  63. Borah DJ, Mostako ATT, Borgogoi AT, Saikia PK, Malakar A (2020) Modified top-down approach for synthesis of molybdenum oxide quantum dots: sonication induced chemical etching of thin films. RSC Adv 10(6):3105–3114. https://doi.org/10.1039/C9RA09773B

    Article  CAS  Google Scholar 

  64. Cheng H, Ding LX, Chen GF, Zhang LL, Xue J (2018) Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv Mater 30:1803694. https://doi.org/10.1002/adma.201803694

    Article  CAS  Google Scholar 

  65. Wang YH, Li CL, Han XJ, Liu DW, Zhao HH (2018) Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl Nano Mater 1:5366–5376. https://doi.org/10.1021/acsanm.8b01479

    Article  CAS  Google Scholar 

  66. Meng R, Huang J, Feng Y, Zu L, Peng C, Zheng L, Mi Y (2018) Black phosphorus quantum Dot/Ti3C2 MXene nanosheet composites for efficient electrochemical lithium/sodium-ion storage. Adv Energy Mater 8(26):1801514. https://doi.org/10.1002/aenm.201801514

    Article  CAS  Google Scholar 

  67. Zhou X, Qin Y, He X, Li Q, Sun J, Lei Z, Liu ZH (2020) Ti3C2Tx Nanosheets/Ti3C2Tx quantum dots/RGO (reduced graphene oxide) fibers for an all-solid-state asymmetric supercapacitor with high volume energy density and good flexibility. ACS Appl Mater Interfaces 12(10):11833–11842. https://doi.org/10.1021/acsami.9b21874

    Article  CAS  Google Scholar 

  68. Shao B, Liu Z, Zeng G, Liu Y, Liang Q, He Q, Liang J (2021) Synthesis of 2D/2D CoAl-LDHs/Ti3C2Tx Schottky-junction with enhanced interfacial charge transfer and visible-light photocatalytic performance. Appl Catal B 286:119867. https://doi.org/10.1016/j.apcatb.2020.119867

    Article  CAS  Google Scholar 

  69. Liang Q, Shao B, Tong S, Liu Z, Tang L, Liu Y, Peng Z (2020) Recent advances of melamine self-assembled graphitic carbon nitride-based materials: design, synthesis and application in energy and environment. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126951

    Article  Google Scholar 

  70. Wu T, Liu X, Liu Y, Cheng M, Liu Z, Zeng G, He Q (2020) Application of QD-MOF composites for photocatalysis: energy production and environmental remediation. Coordinat Chem Rev 403:213097. https://doi.org/10.1016/j.ccr.2019.213097

    Article  CAS  Google Scholar 

  71. Pan Y, Liu X, Zhang W, Liu Z, Zeng G, Shao B, Chen M (2020) Advances in photocatalysis based on fullerene C60 and its derivatives: Properties, mechanism, synthesis, and applications. Appl Catal B 265:118579. https://doi.org/10.1016/j.apcatb.2019.118579

    Article  CAS  Google Scholar 

  72. Shao B, Wang J, Liu Z, Zeng G, Tang L, Liang Q, Yuan X (2020) Ti3C2Tx MXene decorated black phosphorus nanosheets with improved visible-light photocatalytic activity: experimental and theoretical studies. J Mater Chem A 8(10):5171–5185. https://doi.org/10.1039/C9TA13610J

    Article  CAS  Google Scholar 

  73. Shao B, Liu Z, Zeng G, Wang H, Liang Q, He Q, Song B (2020) Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A 8(16):7508–7535. https://doi.org/10.1039/D0TA01552K

    Article  CAS  Google Scholar 

  74. Liang Q, Liu X, Wang J, Liu Y, Liu Z, Tang L, Feng C (2021) In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: experiments and theories. J Hazard Mater 401:123355. https://doi.org/10.1016/j.jhazmat.2020.123355

    Article  CAS  Google Scholar 

  75. Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, Yuan X (2020) Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ Int 134:105298. https://doi.org/10.1016/j.envint.2019.105298

    Article  CAS  Google Scholar 

  76. Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Chen K (2020) A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Mater 19:894–899

    Article  CAS  Google Scholar 

  77. Liu J, Peng W, Li Y, Zhang F, Fan X (2020) 2D MXene-based materials for electrocatalysis. Trans Tianjin Univ 26:149–171. https://doi.org/10.1007/s12209-020-00235-x

    Article  CAS  Google Scholar 

  78. Hemanth NR, Kandasubramanian B (2020) Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chem Eng J 392:123678. https://doi.org/10.1016/j.cej.2019.123678

    Article  CAS  Google Scholar 

  79. Geng J, Ma C, Zhang D, Ning X (2020) Facile and fast synthesis of SnO2 quantum dots for high performance solid-state asymmetric supercapacitor. J Alloys Compd 825:153850. https://doi.org/10.1016/j.jallcom.2020.153850

    Article  CAS  Google Scholar 

  80. Lipatov A, Alhabeb M, Lu H, Zhao S, Loes MJ, Vorobeva NS, Sinitskii A (2020) Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes. Adv Electron Mater 6(4):1901382. https://doi.org/10.1002/aelm.201901382

    Article  CAS  Google Scholar 

  81. Jiang Q, Lei Y, Liang H, Xi K, Xia C, Alshareef HN (2020) Review of MXene electrochemical microsupercapacitors. Energy Stor Mater 27:78–95. https://doi.org/10.1016/j.ensm.2020.01.018

    Article  Google Scholar 

  82. Yang Y, Hantanasirisakul K, Frey N, Anasori B, Green R, Rogge P, Shenoy VB (2020) Distinguishing electronic contributions of surface and sub-surface transition metal atoms in Ti-based MXenes. 2D Mater. doi: https://doi.org/10.1088/2053-1583/ab68e7/meta

  83. Lu C, Yang L, Yan B, Sun L, Zhang P, Zhang W, Sun Z (2020) Nitrogen-doped Ti3C2 MXene: mechanism investigation and electrochemical analysis. Adv Funct Mater. https://doi.org/10.1002/adfm.202000852

    Article  Google Scholar 

  84. Peng J, Zhao Z, Zheng M, Su B, Chen X, Chen X (2020) Electrochemical synthesis of phosphorus and sulfur co-doped graphene quantum dots as efficient electrochemiluminescent immunomarkers for monitoring okadaic acid. Sens Actuators B 304:127383. https://doi.org/10.1016/j.snb.2019.127383

    Article  CAS  Google Scholar 

  85. Yao Y, Lan L, Liu X, Ying Y, Ping J (2020) Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosens Bioelectron 148:111799. https://doi.org/10.1016/j.bios.2019.111799

    Article  CAS  Google Scholar 

  86. Wang C, Shi H, Yang M, Yan Y, Liu E, Ji Z, Fan J (2020) Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Mater Res Bull 124:110730. https://doi.org/10.1016/j.materresbull.2019.110730

    Article  CAS  Google Scholar 

  87. Qin Y, Wang Z, Liu N, Sun Y, Han D, Liu Y, Kang Z (2018) High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior. Nanoscale 10(29):14000–14004. https://doi.org/10.1039/C8NR03903H

    Article  CAS  Google Scholar 

  88. Tang R, Zhou S, Li C, Chen R, Zhang L, Zhang Z, Yin L (2020) Janus-Structured Co-Ti3C2 MXene quantum dots as a schottky catalyst for high-performance photoelectrochemical water oxidation. Adv Funct Mater. https://doi.org/10.1002/adfm.202000637

    Article  Google Scholar 

  89. Fang D, Ren H, Huang Y, Dai H, Huang D, Lin Y (2020) Photothermal amplified cathodic ZnO quantum dots/Ru(bpy)32+/S2O82-ternary system for ultrasensitive electrochemiluminescence detection of thyroglobulin. Sens Actuators B. https://doi.org/10.1016/j.snb.2020.127950

    Article  Google Scholar 

  90. Fang D, Zhao D, Zhang S, Huang Y, Dai H, Lin Y (2020) Black phosphorus quantum dots functionalized MXenes as the enhanced dual-mode probe for exosomes sensing. Sens Actuators B 305:127544. https://doi.org/10.1016/j.snb.2019.127544

    Article  CAS  Google Scholar 

  91. Chen X, Li J, Pan G, Xu W, Zhu J, Zhou D, Song H (2019) Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens Actuators B. https://doi.org/10.1016/j.snb.2019.03.052

    Article  Google Scholar 

  92. Jin Z, Liu C, Liu Z, Han J, Fang Y, Han Y, Xu Y (2020) Rational design of hydroxyl-rich Ti3C2Tx mxene quantum dots for high-performance electrochemical N2 reduction. Adv Energy Mater. https://doi.org/10.1002/aenm.202000797

    Article  Google Scholar 

  93. Yang X, Jia Q, Duan F, Hu B, Wang M, He L, Zhang Z (2019) Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: non-Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl Surf Sci 464:78–87. https://doi.org/10.1016/j.apsusc.2018.09.069

    Article  CAS  Google Scholar 

  94. Li N, Wei S, Xu Y, Liu J, Wu J, Jia G, Cui X (2018) Synergetic enhancement of oxygen evolution reaction by Ti3C2Tx nanosheets supported amorphous FeOOH quantum dots. Electrochim Acta 290:364–368. https://doi.org/10.1016/j.electacta.2018.09.098

    Article  CAS  Google Scholar 

  95. Zhou Y, Maleski K, Anasori B, Thostenson JO, Pang Y, Feng Y, Glass JT (2020) Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 14(3):3576–3586. https://doi.org/10.1021/acsnano.9b10066

    Article  CAS  Google Scholar 

  96. Wu CW, Unnikrishnan B, Chen P, Harroun SG, Chang HT, Huang CC (2020) Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater 25:563–571. https://doi.org/10.1016/j.ensm.2019.09.026

    Article  Google Scholar 

  97. Saroja APVK, Garapati MS, ShyiamalaDevi R, Kamaraj M, Ramaprabhu S (2020) Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage. Appl Surf Sci 504:144430. https://doi.org/10.1016/j.apsusc.2019.144430

    Article  CAS  Google Scholar 

  98. Ding Y, Chen Y, Xu N, Lian X, Li L, Hu Y, Peng S (2020) Facile synthesis of FePS3 Nanosheets@ MXene composite as a high-performance anode material for sodium storage. Nano-Micro Lett 12(1):1–12. https://doi.org/10.1007/s40820-020-0381-y

    Article  CAS  Google Scholar 

  99. Xiao J, Wen J, Zhao J, Ma X, Gao H, Zhang X (2020) A safe etching route to synthesize highly crystalline Nb2CTx MXene for high performance asymmetric supercapacitor applications. Electrochim Acta 337:135803. https://doi.org/10.1016/j.electacta.2020.135803

    Article  CAS  Google Scholar 

  100. Wang C, Zhu XD, Mao YC, Wang F, Gao XT, Qiu SY, Sun KN (2019) MXene-supported Co3O4 quantum dots for superior lithium storage and oxygen evolution activities. Chem Commun 55(9):1237–1240. https://doi.org/10.1039/C8CC09699F

    Article  CAS  Google Scholar 

  101. Xiong J, Pan L, Wang H, Du F, Chen Y, Yang J, Zhang CJ (2018) Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim Acta 268:503–511. https://doi.org/10.1016/j.electacta.2018.02.090

    Article  CAS  Google Scholar 

  102. Feng Y, Zhou F, Dai Y, Xu Z, Deng Q, Peng C (2020) High dielectric and breakdown performances achieved in PVDF/graphene@ MXene nanocomposites based on quantum confinement strategy. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.04.114

    Article  Google Scholar 

  103. Shi M, Xiao P, Lang J, Yan C, Yan X (2020) Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv Sci 7(2):1901975. https://doi.org/10.1002/advs.201901975

    Article  CAS  Google Scholar 

  104. Gao XT, Xie Y, Zhu XD, Sun KN, Xie XM, Liu YT, Ding B (2018) Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li–S batteries. Small 14(41):1802443. https://doi.org/10.1002/smll.201802443

    Article  CAS  Google Scholar 

  105. Zhang T, Jiang X, Li G, Yao Q, Lee JY (2018) A Red-Phosphorous-Assisted Ball-Milling Synthesis of Few-Layered Ti3C2Tx (MXene) Nanodot Composite. Chem Nano Mat 4(1):56–60. https://doi.org/10.1002/cnma.201700232

    Article  CAS  Google Scholar 

  106. Zhu XD, Xie Y, Liu YT (2018) Exploring the synergy of 2D MXene-supported black phosphorus quantum dots in hydrogen and oxygen evolution reactions. J mater Chem A 6(43):21255–21260. https://doi.org/10.1039/C8TA08374F

    Article  CAS  Google Scholar 

  107. Chen Y, Wang D, Lin Y, Zou X, Xie T (2019) In suit growth of CuSe nanoparticles on MXene (Ti3C2) nanosheets as an efficient counter electrode for quantum dot-sensitized solar cells. Electrochim Acta 316:248–256. https://doi.org/10.1016/j.electacta.2019.05.132

    Article  CAS  Google Scholar 

  108. Zhao K, Wang H, Zhu C, Lin S, Xu Z, Zhang X (2019) Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor. Electrochim Acta 308:1–8. https://doi.org/10.1016/j.electacta.2019.03.225

    Article  CAS  Google Scholar 

  109. Wang T, Jiang T, Meng X (2020) PVP-assisted synthesis of Sb2S3 nanowire for self-driven photodetector by using MXenes and Ag nanowires as electrodes. Appl Nanosci. https://doi.org/10.1007/s13204-019-01243-7

    Article  Google Scholar 

  110. Huang G, Li S, Liu L, Zhu L, Wang Q (2020) Ti3C2 MXene-modified Bi2WO6 nanoplates for efficient photodegradation of volatile organic compounds. Appl Surf Sci 503:144183. https://doi.org/10.1016/j.apsusc.2019.144183

    Article  CAS  Google Scholar 

  111. Li Y, Ding L, Liang Z, Xue Y, Cui H, Tian J (2020) Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Chem Eng J 383:123178. https://doi.org/10.1016/j.cej.2019.123178

    Article  CAS  Google Scholar 

  112. Thomas D, Lee HO, Santiago KC, Pelzer M, Kuti A, Jenrette E, Bahoura M (2020) Rapid microwave synthesis of tunable cadmium selenide (CdSe) quantum dots for optoelectronic applications. J Nanomater. https://doi.org/10.1155/2020/5056875

    Article  Google Scholar 

  113. Xu H, Ren A, Wu J, Wang Z (2020) Recent advances in 2D MXenes for photodetection. Adv Func Mater. https://doi.org/10.1002/adfm.202000907

    Article  Google Scholar 

  114. Deng J, Wang H, Xun J, Wang J, Yang X, Shen W, He R (2020) Room-temperature synthesis of excellent-performance CsPb1-xSnxBr 3 perovskite quantum dots and application in light emitting diodes. Mater Des 185:108246. https://doi.org/10.1016/j.matdes.2019.108246

    Article  CAS  Google Scholar 

  115. Zhang H, Li M, Zhu C, Tang Q, Kang P, Cao J (2020) Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram Int 46(1):81–88. https://doi.org/10.1016/j.ceramint.2019.08.236

    Article  CAS  Google Scholar 

  116. Jiang X, Kuklin AV, Baev A, Ge Y, Ågren H, Zhang H, Prasad PN (2020) Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys Rep 848:1–58. https://doi.org/10.1016/j.physrep.2019.12.006

    Article  CAS  Google Scholar 

  117. Li R, Tang L, Zhao Q, Teng KS, Lau SP (2020) Facile synthesis of ZnS quantum dots at room temperature for ultra-violet photodetector applications. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2020.137127

    Article  Google Scholar 

  118. Wang W, Feng H, Liu J, Zhang M, Liu S, Feng C, Chen S (2020) A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124116

    Article  Google Scholar 

  119. Huang D, Xie Y, Lu D, Wang Z, Wang J, Yu H, Zhang H (2019) Demonstration of a white laser with V2C MXene-based quantum dots. Adv Mater 31(24):1901117. https://doi.org/10.1002/adma.201901117

    Article  CAS  Google Scholar 

  120. Lu S, Sui L, Liu Y, Yong X, Xiao G, Yuan K, Yang B (2019) White Photoluminescent Ti3C2 mxene quantum dots with two-photon fluorescence. Adv Sci 6(9):1801470. https://doi.org/10.1002/advs.201801470

    Article  CAS  Google Scholar 

  121. Xu Q, Yang W, Wen Y, Liu S, Liu Z, Ong WJ, Li N (2019) Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl Mater Today 16:90–101. https://doi.org/10.1016/j.apmt.2019.05.001

    Article  Google Scholar 

  122. Xu G, Niu Y, Yang X, Jin Z, Wang Y, Xu Y, Niu H (2018) Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence. Adv Opt Mater 6(24):1800951. https://doi.org/10.1002/adom.201800951

    Article  CAS  Google Scholar 

  123. Nguyen TP, Nguyen DMT, Le HK, Vo DVN, Lam SS, Varma RS, Van Le Q (2020) MXenes: applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol Catal 486:110850. https://doi.org/10.1016/j.mcat.2020.110850

    Article  CAS  Google Scholar 

  124. Ma XD, Chi TTK, Nguyen TC, Ta VT (2020) Scalable synthesis of highly photoluminescence carbon quantum dots. Mater Lett. https://doi.org/10.1016/j.matlet.2020.127595

    Article  Google Scholar 

  125. Guo S, Kang S, Feng S, Lu W (2020) MXene-enhanced deep ultraviolet photovoltaic performances of crossed Zn2GeO4 nanowires. J Phys Chem C 124(8):4764–4771. https://doi.org/10.1021/acs.jpcc.0c01032

    Article  CAS  Google Scholar 

  126. Xiao R, Zhao C, Zou Z, Chen Z, Tian L, Xu H, Yang X (2020) In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B 268:118382. https://doi.org/10.1016/j.apcatb.2019.118382

    Article  CAS  Google Scholar 

  127. Qu X, Gao Z, Liu M, Shi L, Li Y, Song H (2020) In-situ synthesis of Bi2S3 quantum dots for enhancing photodegradation of organic pollutants. Appl Surface Sci 501:144047. https://doi.org/10.1016/j.apsusc.2019.144047

    Article  CAS  Google Scholar 

  128. Ahmadi Z, Ramezani H, Azizi SN, Chaichi MJ (2020) Synthesis of zeolite NaY supported Mn-doped ZnS quantum dots and investigation of their photodegradation ability towards organic dyes. Environ Sci Pollut Res 27:9707–9717. https://doi.org/10.1007/s11356-019-07192-6

    Article  CAS  Google Scholar 

  129. Sinha A, Mugo SM, Chen J, Lokesh KS (2020) MXene-based sensors and biosensors: next-generation detection platforms. Handbook Nanomater Anal Chem. https://doi.org/10.1016/B978-0-12-816699-4.00014-1

    Article  Google Scholar 

  130. Li DY, Wang SP, Azad F, Su SC (2020) Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+. Ecotoxicol Environ Saf 190:110141. https://doi.org/10.1016/j.ecoenv.2019.110141

    Article  CAS  Google Scholar 

  131. Ren A, Zou J, Lai H, Huang Y, Yuan L, Xu H, Hao X (2020) Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Mater Horiz. https://doi.org/10.1039/D0MH00537A

    Article  Google Scholar 

  132. Zheng J, Xie Y, Wei Y, Yang Y, Liu X, Chen Y, Xu B (2020) An efficient synthesis and photoelectric properties of green carbon quantum dots with high fluorescent quantum yield. Nanomater 10(1):82. https://doi.org/10.3390/nano10010082

    Article  CAS  Google Scholar 

  133. Zhang H, Wang Z, Wang F, Zhang Y, Wang H, Liu Y (2020) In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Anal Chem 92(7):5546–5553. https://doi.org/10.1021/acs.analchem.0c00469

    Article  CAS  Google Scholar 

  134. Zhao X, Cui Y, He Y, Wang S, Wang J (2020) Synthesis of multi-mode quantum dots encoded molecularly imprinted polymers microspheres and application in quantitative detection for dopamine. Sens Actuators B 304:127265. https://doi.org/10.1016/j.snb.2019.127265

    Article  CAS  Google Scholar 

  135. Szuplewska A, Kulpińska D, Dybko A, Chudy M, Jastrzębska AM, Olszyna A, Brzózka Z (2020) Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends in biotechnol 38(3):264–279. https://doi.org/10.1016/j.tibtech.2019.09.001

    Article  CAS  Google Scholar 

  136. Hu P, Zhou R, Wang D, Luo H, Xiong X, Huang K, Chen P (2020) Cysteine mediated synthesis of quantum dots: mechanism and application in visual detection of hydrogen peroxide and glucose. Sens Actuators B 308:127702. https://doi.org/10.1016/j.snb.2020.127702

    Article  CAS  Google Scholar 

  137. Guan Q, Ma J, Yang W, Zhang R, Zhang X, Dong X, Li N (2019) Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu 2+ ion sensing. Nanoscale 11(30):14123–14133. https://doi.org/10.1039/C9NR04421C

    Article  CAS  Google Scholar 

  138. Kong W, Niu Y, Liu M, Zhang K, Xu G, Wang Y, Li J (2019) One-step hydrothermal synthesis of fluorescent MXene-like titanium carbonitride quantum dots. Inorg Chem Commun 105:151–157. https://doi.org/10.1016/j.inoche.2019.04.033

    Article  CAS  Google Scholar 

  139. Xu Q, Ding L, Wen Y, Yang W, Zhou H, Chen X, Li N (2018) High photoluminescence quantum yield 18.7% of by using nitrogen-doped Ti3C2 MXene quantum dots. J Mater Chem C 6(24):6360–6369. https://doi.org/10.1039/C8TC02156B

    Article  CAS  Google Scholar 

  140. Zhang Q, Sun Y, Liu M, Liu Y (2020) Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. Nanoscale. https://doi.org/10.1039/C9NR08794J

    Article  Google Scholar 

  141. Pandey P, Sengupta A, Parmar S, Bansode U, Gosavi S, Swarnkar A, Ogale S (2020) CsPbBr 3-Ti3C2Tx MXene QD/QD heterojunction: photoluminescence quenching, charge transfer, and Cd ion sensing application. ACS Appl Nano Mater 3(4):3305–3314. https://doi.org/10.1021/acsanm.0c00051

    Article  CAS  Google Scholar 

  142. Liu M, He Y, Zhou J, Ge Y, Zhou J, Song G (2020) A’’naked-eye’’colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta 1103:134–142. https://doi.org/10.1016/j.aca.2019.12.069

    Article  CAS  Google Scholar 

  143. Xu Q, Ma J, Khan W, Zeng X, Li N, Cao Y, Xu M (2020) Highly green fluorescent Nb2C MXene quantum dots. Chem Commun. https://doi.org/10.1039/D0CC02131H

    Article  Google Scholar 

  144. Liu M, Zhou J, He Y, Cai Z, Ge Y, Zhou J, Song G (2019) ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Microchim Acta 186(12):770. https://doi.org/10.1007/s00604-019-3945-0

    Article  CAS  Google Scholar 

  145. Duan F, Guo C, Hu M, Song Y, Wang M, He L, Zhou L (2020) Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155. Sens Actuators B 310:127844. https://doi.org/10.1016/j.snb.2020.127844

    Article  CAS  Google Scholar 

  146. Xu X, Zhang H, Diao Q, Zhu Y, Yang G, Ma B (2020) Highly sensitive fluorescent sensing for intracellular glutathione based on Ti3C2 quantum dots. J Mater Sci 31(1):175–181. https://doi.org/10.1007/s10854-019-02682-2

    Article  CAS  Google Scholar 

  147. Lu Q, Wang J, Li B, Weng C, Li X, Yang W, Zhou X (2020) A dual-emission reverse change ratio photoluminescence sensor based on probe of N-doped Ti3C2 quantum dots@ DAP to detect H2O2 and Xanthine. Anal Chem. https://doi.org/10.1021/acs.analchem.0c00895

    Article  Google Scholar 

  148. Yang G, Zhao J, Yi S, Wan X, Tang J (2020) Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens Actuators B 309:127735. https://doi.org/10.1016/j.snb.2020.127735

    Article  CAS  Google Scholar 

  149. Guo Z, Zhu X, Wang S, Lei C, Huang Y, Nie Z, Yao S (2018) Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale 10(41):19579–19585. https://doi.org/10.1039/C8NR05767B

    Article  CAS  Google Scholar 

  150. Zhou L, Wu F, Yu J, Deng Q, Zhang F, Wang G (2017) Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118:50–57. https://doi.org/10.1016/j.carbon.2017.03.023

    Article  CAS  Google Scholar 

  151. Chen X, Sun X, Xu W, Pan G, Zhou D, Zhu J, Song H (2018) Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale 10(3):1111–1118. https://doi.org/10.1039/C7NR06958H

    Article  CAS  Google Scholar 

  152. Prasad C, Yang X, Liu Q, Tang H, Rammohan A, Zulfiqar S, Shah S (2020) Recent advances in MXenes supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications. J Ind Eng Chem 85:1–33. https://doi.org/10.1016/j.jiec.2019.12.003

    Article  CAS  Google Scholar 

  153. Bathula B, Koutavarapu R, Shim J, Yoo K (2020) Facile one-pot synthesis of gold/tin oxide quantum dots for visible light catalytic degradation of methylene blue: optimization of plasmonic effect. J Alloys Compd 812:152081. https://doi.org/10.1016/j.jallcom.2019.152081

    Article  CAS  Google Scholar 

  154. Hao C, Liao Y, Wu Y, An Y, Lin J, Gu Z, Wang X (2020) RuO2-loaded TiO2-MXene as a high performance photocatalyst for nitrogen fixation. J Phys Chem Solids 136:109141. https://doi.org/10.1016/j.jpcs.2019.109141

    Article  CAS  Google Scholar 

  155. Wang T, Nie C, Ao Z, Wang S, An T (2020) Recent progress in g-C3N4 quantum dots: synthesis, properties and applications in photocatalytic degradation of organic pollutants. J Mater Chem A 8:2485–502

    Google Scholar 

  156. Xie Y, Rahman MM, Kareem S, Dong H, Qiao F, Xiong W, Zhao X (2020) Facile synthesis of CuS/MXene nanocomposites for efficient photocatalytic hydrogen generation. Cryst Eng Comm 22(11):2060–2066. https://doi.org/10.1039/D0CE00104J

    Article  CAS  Google Scholar 

  157. Li Y, Ding L, Guo Y, Liang Z, Cui H, Tian J (2019) Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl Mater Interfaces 11(44):41440–41447. https://doi.org/10.1021/acsami.9b14985

    Article  CAS  Google Scholar 

  158. Yao Z, Sun H, Sui H, Liu X (2020) Construction of BPQDs/Ti3C2@ TiO2 composites with favorable charge transfer channels for enhanced photocatalytic activity under visible light irradiation. Nanomater 10(3):452. https://doi.org/10.3390/nano10030452

    Article  CAS  Google Scholar 

  159. Zeng Z, Yan Y, Chen J, Zan P, Tian Q, Chen P (2019) Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv Fun Mater 29(2):1806500. https://doi.org/10.1002/adfm.201806500

    Article  CAS  Google Scholar 

  160. Huang H, Jiang R, Feng Y, Ouyang H, Zhou N, Zhang X, Wei Y (2020) Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 12:1325–1338. https://doi.org/10.1039/C9NR07616F

    Article  CAS  Google Scholar 

  161. Sivasankarapillai VS, Somakumar AK, Joseph J, Nikazar S, Rahdar A, Kyzas GZ (2020) Cancer theranostic applications of MXene nanomaterials: recent updates. Nano-Struct 22:100457. https://doi.org/10.1016/j.nanoso.2020.100457

    Article  CAS  Google Scholar 

  162. Cheng L, Wang X, Gong F, Liu T, Liu Z (2020) 2D nanomaterials for cancer theranostic applications. Adv Mater 32(13):1902333. https://doi.org/10.1002/adma.201902333

    Article  CAS  Google Scholar 

  163. Zikalala NZ, Sundararajan P, Tsolekile N, Oluwafemi OS (2020) Facile green synthesis of ZnInS quantum dots: temporal evolution of its optical properties and cell viability against normal and cancerous cells. J Mater Chem C. https://doi.org/10.1039/D0TC02098B

    Article  Google Scholar 

  164. Sundaram A, Ponraj JS, Wang C, Peng WK, Manavalan RK, Dhanabalan SC, Gaspar J (2020) Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. J Mater Chem B. https://doi.org/10.1039/D0TB00251H

    Article  Google Scholar 

  165. Yu H, Zhuang Z, Li D, Guo Y, Li Y, Zhong H, Guo Z (2020) Photo-induced synthesis of molybdenum oxide quantum dots for surface-enhanced Raman scattering and photothermal therapy. J Mater Chem B 8:1040–1048. https://doi.org/10.1039/C9TB02102G

    Article  CAS  Google Scholar 

  166. Yu X, Cai X, Cui H, Lee SW, Yu XF, Liu B (2017) Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9(45):17859–17864. https://doi.org/10.1039/C7NR05997C

    Article  CAS  Google Scholar 

  167. Cai G, Yu Z, Tong P, Tang D (2019) Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone. Nanoscale 11(33):15659–15667. https://doi.org/10.1039/C9NR05797H

    Article  CAS  Google Scholar 

  168. Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu-El-Rub E, Moudgil M, Dhingra S (2019) Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthc Mater 8(16):1900569. https://doi.org/10.1002/adhm.201900569

    Article  CAS  Google Scholar 

  169. Li X, Liu F, Huang D, Xue N, Dang Y, Zhang M, Liu H (2020) Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Adv Func Mater. https://doi.org/10.1002/adfm.202000308

    Article  Google Scholar 

Download references

Acknowledgements

No certain grant from the public, commercial, or nonprofit funding organizations was awarded for the present study. Researchers are thankful of the Islamic Azad University, Yazd Branch research council for technical contributions during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Reza Shishehbore.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, M., Shishehbore, M.R. Energy conversion and optical applications of MXene quantum dots. J Mater Sci 56, 17942–17978 (2021). https://doi.org/10.1007/s10853-021-06428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06428-6

Navigation