Skip to main content

Advertisement

Log in

Synthesis, dielectric and ferroelectric properties of BCZTL/BCZTM bilayer ceramics for energy storage applications

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3–3 wt.%Li2CO3/(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3–3 wt.%MgO (abbreviation as BCZTL/BCZTM) bilayer ceramics are prepared by the conventional solid-state reaction method. A single-perovskite structure and the diffused phase transition behavior are found in the BCZTL/BCZTM bilayer ceramics by XRD and ε − T curves. The bilayer ceramics show high energy storage density (Wrec) 258 mJ/cm3 and good energy storage efficiency (η) 82.9%. Moreover, compared with the BCZTL and BCZTM ceramics, the recoverable energy storage density of BCZTL/BCZTM bilayer ceramics has, respectively, increased by 25.8% and 10.7%. And the bilayer ceramics exhibit a good thermostability with a smaller change rate (13.38%) of Wrec. Meanwhile, the energy storage efficiency obviously increases from 84.0% at 20 °C to 91.6% at 100 °C, which indicates that the BCZTL/BCZTM bilayer ceramics have a potential application in energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wu JY, Mahajan A, Riekehr L, Zhang HF, Yang B, Meng N, Zhang Z, Yan HX (2018) Perovskite Srx(Bi1−xNa0.97−xLi0.03)0.5TiO3 ceramics with polar nano regions for high power energy storage. Nano Energy 50:723–732

    CAS  Google Scholar 

  2. Shao TQ, Du HL, Ma H, Qu SB, Wang J, Wang JF, Wei XY, Xu Z (2017) Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J Mater Chem A 5:554–563

    CAS  Google Scholar 

  3. Shkuratov SI, Baird J, Antipov VG, Zhang SJ, Chase JB (2019) Multilayer PZT 95/5 antiferroelectric film energy storage devices with giant power density. Adv Mater 31:1904819. https://doi.org/10.1002/adma.201904819

    Article  CAS  Google Scholar 

  4. Xie JY, Yao MW, Gao WB, Su Z, Yao X (2019) Ultrahigh breakdown strength and energy density in PLZST@ PBSAZM antiferroelectric ceramics based on core-shell structure. J Eur Ceram Soc 39:1050–1056

    CAS  Google Scholar 

  5. Wang HS, Liu YC, Yang TQ, Zhang SJ (2018) Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv Funct Mater 29:1807321. https://doi.org/10.1002/adfm.201807321

    Article  CAS  Google Scholar 

  6. Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, Chowdhary P (2019) Heavy metal contamination: an alarming threat to environment and human health, Environmental biotechnology: for sustainable future. Springer, Singapore, pp 103–125

    Google Scholar 

  7. Shi RK, Pu YP, Wang W, Guo X, Li JW, Yang MD, Zhou SY (2020) A novel lead-free NaNbO3–Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability. J Alloys Compd 815:152356. https://doi.org/10.1016/j.jallcom.2019.152356

    Article  CAS  Google Scholar 

  8. Li ZT, Han B, Li JT, Li M, Zhang J, Yin J, Lou LY, Chen S, Chen J, Li JF, Wang K (2019) Ferroelectric and piezoelectric properties of 0.82(Bi0.5Na0.5)TiO3–(0.18−x)BaTiO3x(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 lead-free ceramics. J Alloys Compd 774:948–953

    CAS  Google Scholar 

  9. Kumar S, Thakur N (2019) Investigation of structural, optical and electrical properties of lead-free K0.5Na0.5NbO3 ceramics synthesized by sol-gel reaction route. J Electron Mater 48:6203–6215

    CAS  Google Scholar 

  10. Zhang YM, Liang GC, Tang SL, Peng BL, Zhang Q, Liu LJ, Sun WH (2020) Phase-transition induced optimization of electrostrain, electrocaloric refrigeration and energy storage of LiNbO3 doped BNT-BT ceramics. Ceram Int 46:1343–1351

    CAS  Google Scholar 

  11. Zhu LF, Lei XW, Zhao L, Irfan-Hussain M, Zhao GZ, Zhang BP (2019) Phase structure and energy storage performance for BiFeO3–BaTiO3 based lead-free ferroelectric ceramics. Ceram Int 45:20266–20275

    CAS  Google Scholar 

  12. Pan Z, Hu D, Zhang Y, Liu J, Shen B, Zhai J (2019) Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J Mater Chem A 7:4072–4078

    CAS  Google Scholar 

  13. Jayakrishnan AR, Alex KV, Thomas A, Silva JPB, Kamakshi K, Dabra N, Sekhar KC, Moreira JA, Gomes MJM (2019) Composition-dependent xBa(Zr0.2Ti0.8)O3–(1−x)(Ba0.7Ca0.3)TiO3 bulk ceramics for high energy storage applications. Ceram Int 45:5808–5818

    CAS  Google Scholar 

  14. Wang ZM, Wang JJ, Chao XL, Wei LL, Yang B, Wang DW, Yang ZP (2016) Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics prepared by different methods. J Mater Sci 27:5047–5058. https://doi.org/10.1007/s10854-016-4392-x

    Article  CAS  Google Scholar 

  15. Lu HW, Liu LZ, Lin JQ, Yang WL, Weng L, Zhang XR (2018) Effects of Tb doping on structural and electrical properties of 0.47(Ba0.7Ca0.3)TiO3–0.53Ba(Zr0.2Ti0.8)O3 thin films at various annealing temperature by pulsed laser deposition. Ceram Int 44:6514–6519

    CAS  Google Scholar 

  16. Swain AB, Subramanian V, Murugavel P (2018) The role of precursors on piezoelectric and ferroelectric characteristics of 0.5BCT–0.5BZT ceramic. Ceram Int 44:6861–6865

    CAS  Google Scholar 

  17. Zhan D, Xu Q, Huang DP, Liu HX, Chen W, Zhang F (2016) Dielectric nonlinearity and electric breakdown behaviors of Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage utilizations. J Alloys Compd 682:594–600

    CAS  Google Scholar 

  18. Zhou MX, Liang RH, Zhou ZY, Xu CH, Nie X, Chen XF, Dong XL (2018) High energy storage properties of (Ni1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. Mater Res Bull 98:166–172

    CAS  Google Scholar 

  19. Yang HB, Yan F, Zhang G, Lin Y, Wang F (2017) Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3–Al2O3–SiO2 glass–ceramics addition for enhanced energy storage. J Alloys Compd 720:116–125

    CAS  Google Scholar 

  20. Bai WF, Wang LJ, Zhao XY, Zheng P, Wen F, Li LL, Zhai JW, Ji ZG (2019) Tailoring frequency-insensitive large field-induced strain and energy storage properties in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-modified (Bi0.5Na0.5)TiO3 lead-free ceramics. Dalton Trans 48:10160–10173

    CAS  Google Scholar 

  21. Sui JN, Fan HQ, Hu B, Ning L (2018) High temperature stable dielectric properties and enhanced energy-storage performance of (1−x)(0.85Na0.5Bi0.5TiO3–0.15Ba0.8Ca0.2Ti0.8Zr0.2O3)–xK0.5Na0.5NbO3 lead-free ceramics. Ceram Int 44:18054–18059

    CAS  Google Scholar 

  22. Gao Y, Liu HX, Yao ZH, Hao H, Yu ZY, Cao MH (2017) Effect of layered structure on dielectric properties and energy storage density in xBa0.7Sr0.3TiO3–SrTiO3 multilayer ceramics. Ceram Int 43:8418–8423

    CAS  Google Scholar 

  23. Wang G, Lu ZL, Li JL, Ji HF, Yang HJ, Li LH, Sun SK, Feteira A, Yang HG, Zuo RZ, Wang DW, Reaney IM (2020) Lead-free (Ba, Sr)TiO3–BiFeO3 based multilayer ceramic capacitors with high energy density. J Eur Ceram Soc 4:1779–1783

    Google Scholar 

  24. Liu G, Zhang LY, Wu QK, Wang ZY, Li Y, Li DQ, Liu HB, Yan Y (2018) Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics. J Mater Sci 29:18859–18867. https://doi.org/10.1007/s10854-018-0011-3

    Article  CAS  Google Scholar 

  25. Zhang Y, Sun HJ, Chen W (2017) Li-modified Ba0.99Ca0.01Zr0.02Ti0.98O3 lead-free ceramics with highly improved piezoelectricity. J Alloys Compd 694:745–751

    CAS  Google Scholar 

  26. Tan HX, Takenaka H, Xu CS, Duan WH, Grinberg I, Rappe AM (2018) First-principles studies of the local structure and relaxor behavior of Pb(Mg1/3Nb2/3)O3–PbTiO3-derived ferroelectric perovskite solid solutions. Phys Rev B 97:174101. https://doi.org/10.1103/PhysRevB.97.174101

    Article  CAS  Google Scholar 

  27. Kaygili O, Keser S, Bulut N, Ates T (2018) Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B 537:63–67

    CAS  Google Scholar 

  28. Miao JY, Zhang ZQ, Liu ZF, Li YX (2015) Investigation on the dielectric properties of Mg-doped (Ba0.95Ca0.05)(Ti0.85Zr0.15)O3 ceramics. Ceram Int 41:S487–S491

    CAS  Google Scholar 

  29. Guo YY, Zeng HD, Jiang YJ, Qi GW, Chen GR, Chen JD, Sun LY (2019) Tunable upconversion emission in Er3+/Yb3+ co-doped oxyfluoride glass ceramics containing NaYF4 nanocrystals by the incorporation of Li+ ions. J Lumin 214:116524. https://doi.org/10.1016/j.jlumin.2019.116524

    Article  CAS  Google Scholar 

  30. Dinesh Kumar S, Magesh J, Subramanian V (2018) Temperature dependent magnetoelectric studies in co-fired bilayer laminate composites. J Alloys Compd 753:595–600

    CAS  Google Scholar 

  31. Ma QL, Zhao Q, Jia XM, He DL, Chang AM (2019) Preparation and characterization for LaMnO3 and 0.3LaMnO3–0.7Y2O3 high temperature bilayer structure NTC thermistors. J Mater Sci 30:11005–11010. https://doi.org/10.1007/s10854-019-01441-7

    Article  CAS  Google Scholar 

  32. Ayrikyan A, Weyland F, Steiner S, Duerrschnabel M, Molina-Luna L, Koruza J, Webber KG (2017) Multilayer lead-free piezoceramic composites: influence of co-firing on microstructure and electromechanical behavior. J Am Ceram Soc 100:3673–3683

    CAS  Google Scholar 

  33. Ayrikyan A, Prach O, Khansur NH, Keller S, Yasui S, Itoh M, Sakata O, Durst K, Webber KG (2018) Investigation of residual stress in lead-free BNT-based ceramic/ceramic composites. Acta Mater 148:432–441

    CAS  Google Scholar 

  34. Xu Y, Zhang KT, Fu L, Tong T, Cao L, Zhang QF, Chen LG (2019) Effect of MgO addition on sintering temperature, crystal structure, dielectric and ferroelectric properties of lead-free BZT ceramics. J Mater Sci 30:7582–7589. https://doi.org/10.1007/s10854-019-01073-x

    Article  CAS  Google Scholar 

  35. Huang N, Liu HX, Hao H, Yao ZH, Cao MH, Xie J (2019) Energy storage properties of MgO-doped 0.5Bi0.5Na0.5TiO3–0.5SrTiO3 ceramics. Ceram Int 45:14921–14927

    CAS  Google Scholar 

  36. Ma ZS, Qi SS, Zuo RZ (2016) Camber evolution and stress development during cofiring of dielectric and ferrite bilayer laminates. Ceram Int 42:7164–7174

    CAS  Google Scholar 

  37. Ganjir R, Bajpai PK (2019) Influence of Co doping on the structural, dielectric and raman properties of Ba0.75Sr0.25Ti1−xCoxO3. J Electron Mater 48:623–641

    Google Scholar 

  38. Zhu CQ, Wang XH, Zhao QC, Cai ZM, Cen ZY, Li LT (2019) Effects of grain size and temperature on the energy storage and dielectric tunability of non-reducible BaTiO3-based ceramics. J Eur Ceram Soc 39:1142–1148

    CAS  Google Scholar 

  39. Hao JG, Bai WF, Li W, Zhai JW (2012) Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J Am Ceram Soc 95:1998–2006

    CAS  Google Scholar 

  40. Foeller PY, Dean JS, Reaney IM, Sinclair DC (2016) Design of a bilayer ceramic capacitor with low temperature coefficient of capacitance. Appl Phys Lett 109:082904. https://doi.org/10.1063/1.4961616

    Google Scholar 

  41. Amaral TM, Antonelli E, Ochoa DA, Garcia JE, Hernandes AC (2015) Microstructural features and functional properties of bilayered BaTiO3/BaTi1−xZrxO3 Ceramics. J Am Ceram Soc 98:1169–1174

    CAS  Google Scholar 

  42. Omari LH, Hajji L, Lamhasni T, Jama C (2019) Synthesis, structural, optical and electrical properties of La-modified Lead Iron Titanate ceramics for NTCR thermo-resistance based sensors. Mater Chem Phys 223:60–67

    CAS  Google Scholar 

  43. Tao H, Yang J, Lv X, Hao X, Wu J (2019) Electrocaloric behavior and piezoelectric effect in relaxor NaNbO3-based ceramics. J Am Ceram Soc 102:2578–2586

    CAS  Google Scholar 

  44. Puli VS, Pradhan DK, Perez W, Katiyar RS (2013) Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT-BCT ceramic capacitors. J Phys Chem Solids 74:466–475

    Google Scholar 

  45. M’nassria R, Khelifi M, Rahmouni H, Selmi A, Khirouni K, Chniba-Boudjada N, Cheikhrouhou A (2016) Study of physical properties of cobalt substituted Pr0.7Ca0.3MnO3 ceramics. Ceram Int 42:6145–6153

    Google Scholar 

  46. Peng ZH, Zheng DY, Zhou T, Yang L, Zhang N, Fang C (2018) Effects of Co2O3 doping on electrical properties and dielectric relaxation of PMS–PNN–PZT ceramics. J Mater Sci 29:5961–5968 10.1007/s10854-018-8569-3

    CAS  Google Scholar 

  47. Yan TX, Han FF, Ren SK, Ma X, Fang L, Liu LJ, Kuang XJ, Elouadi B (2018) Dielectric properties of (K0.5Na0.5)NbO3–(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors. Appl Phys A 4:338. https://doi.org/10.1007/s00339-018-1757-4

    Article  CAS  Google Scholar 

  48. Yang HB, Yan F, Lin Y, Wang T, Wang F, Wang YL, Guo L, Tai WD, Wei H (2017) Lead-free BaTiO3–Bi0.5Na0.5TiO3–Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J Eur Ceram Soc 10:3303–3311

    Google Scholar 

  49. Guo F, Cai W, Gao R, Fu CL, Chen G, Deng XL, Wang ZH, Zhang QW (2019) Microstructure, enhanced relaxor-like behavior and electric properties of (Ba0.85Ca0.15)(Zr0.1−xHfxTi0.9)O3 ceramics. J Electron Mater 48:3239–3247

    CAS  Google Scholar 

  50. Chen G, Fan T, Yang HQ, Fu CL, Gao RL, Deng XL, Wang ZH, Fan PG, Cai W (2019) Effects of BiAlO3 dopant and sintering method on microstructure, dielectric relaxation characteristic and ferroelectric properties of BaTiO3-based ceramics. Appl Phys A 125:433. https://doi.org/10.1007/s00339-019-2729-z

    Article  CAS  Google Scholar 

  51. Yang ZT, Gao F, Du HL, Jin L, Yan LL, Hu QY, Yu Y, Qu SB, Wei XY, Xu Z, Wang YJ (2019) Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58:768–777

    CAS  Google Scholar 

  52. Rath M, Miryala M, Murakami M, Rao MR (2019) Controlled piezotronic properties on recoverable energy storage density in rare-earth ions doped epitaxial PZT thin films. J Phys D 52:304001. https://doi.org/10.1088/1361-6463/ab1b08

    Article  CAS  Google Scholar 

  53. Kushvaha DK, Rout SK, Tiwari B (2019) Structural, piezoelectric and high-density energy storage properties of lead-free BNKT-BCZT solid solution. J Alloys Compd 782:270–276

    CAS  Google Scholar 

  54. Patel S, Sharma D, Singh A, Vaish R (2016) Enhanced thermal energy conversion and dynamic hysteresis behavior of Sr-doping Ba0.85Ca0.15Ti0.9Zr0.1O3 ferroelectric ceramics. J Materiom 2:75–86

    Google Scholar 

  55. Zhan D, Xu Q, Huang DP, Liu HX, Chen W, Zhang F (2018) Contributions of intrinsic and extrinsic polarization species to energy storage properties of Ba0.95Ca0.05Zr0.2Ti0.8O3 ceramics. J Phys Chem Solids 114:220–227

    CAS  Google Scholar 

  56. Liu B, Wu Y, Huang YH, Song KX, Wu YJ (2019) Enhanced dielectric strength and energy storage density in BaTi0.7Zr0.3O3 ceramics via spark plasma sintering. J Mater Sci 54:4511–4517. https://doi.org/10.1007/s10853-018-3170-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Foundation of North University of China (XJJ201915), Shanxi Scholarship Council of China (2020-112) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2020L0268, 2020L0307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Yao, H. & You, Y. Synthesis, dielectric and ferroelectric properties of BCZTL/BCZTM bilayer ceramics for energy storage applications. J Mater Sci 56, 7547–7556 (2021). https://doi.org/10.1007/s10853-020-05739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05739-4

Navigation