Skip to main content
Log in

Novel fluorinated random co-polyimide/amine-functionalized zeolite MEL50 hybrid films with enhanced thermal and low dielectric properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of fluorinated random co-polyimide/amine-functionalized zeolite MEL50 hybrid films (co-FPI/MEL50-NH2) was successfully prepared with the addition of MEL50-NH2 (e.g., 0, 1, 3, 5, 7 wt% of the co-FPI). Thereinto, zeolite MEL50 was synthesized by hydrothermal method and co-FPI was obtained by random copolycondensation from 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl] propane dianhydride (BPADA), 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 4,4′-diaminodiphenyl ether (ODA). Then, the properties of the hybrid films such as morphology, thermal properties, UV transparency and dielectric constant were investigated to probe the effect of incorporation of MEL50 on PI matrix. The results showed that the thermal properties and low dielectric properties of the hybrid films were markedly enhanced to achieve the optimum with the addition of 3 wt% MEL50-NH2. In our results, the glass transition temperature increased up to 266 °C from 243 °C of the pristine co-FPI film and 5% weight loss temperature increased up to 527 °C from 517 °C of the pristine co-FPI film in nitrogen. The dielectric constant decreased down to 2.68 from 3.21 of the pristine co-FPI film. This convenient approach provides a possibility of making PI possess both enhanced thermal properties and low dielectric constant, which is more applicable to microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ding M (2007) Isomeric polyimides. Prog Polym Sci 32:623–668

    Article  Google Scholar 

  2. Smith JG Jr, Connell JW, Delozier DM et al (2004) Space durable polymer/carbon nanotube films for electrostatic charge mitigation. Polymer 45:825–836

    Article  Google Scholar 

  3. Park C, Ounaies Z, Watson KA et al (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308

    Article  Google Scholar 

  4. Su RQ, Müller TE, Procházka J, Lercher JA (2002) A new type of low-κ dielectric films based on polysilsesquioxanes. Adv Mater 14:1369–1373

    Article  Google Scholar 

  5. Hedrick JL, Carter KR, Richter R et al (1998) Polyimide nanofoams from aliphatic polyester-based copolymers. Chem Mater 10:39–49

    Article  Google Scholar 

  6. Murotani E, Lee JK, Chatzichristidi M et al (2009) Cross-linkable molecular glasses: low dielectric constant materials patternable in hydrofluoroethers. ACS Appl Mater Interfaces 1:2363–2370

    Article  Google Scholar 

  7. Wang X, Dai Y, Wang W et al (2014) Fluorographene with high fluorine/carbon ratio: a nanofiller for preparing low-κ polyimide hybrid films. ACS Appl Mater Interfaces 6:16182–16188

    Article  Google Scholar 

  8. Yang CP, Su YY, Guo W, Hsiao SH (2009) Synthesis and properties of novel fluorinated polynaphthalimides derived from 1,4,5,8-naphthalenetetracarboxylic dianhydride and trifluoromethyl-substituted aromatic bis(ether amine)s. Eur Polym J 45:721–729

    Article  Google Scholar 

  9. Yang F, Li Y, Ma T, Bu Q, Zhang S (2010) Synthesis and characterization of fluorinated polyimides derived from novel unsymmetrical diamines. J Fluor Chem 131:767–775

    Article  Google Scholar 

  10. Wang S, Zhou H, Dang G, Chen C (2009) Synthesis and characterization of thermally stable, high-modulus polyimides containing benzimidazole moieties. J Polym Sci Polym Chem 47:2024–2031

    Article  Google Scholar 

  11. Sun M, Chang J, Tian G, Niu H, Wu D (2016) Preparation of high-performance polyimide fibers containing benzimidazole and benzoxazole units. J Mater Sci 51:2830–2840. doi:10.1007/s10853-015-9591-y

    Article  Google Scholar 

  12. Que X, Yan Y, Qiu Z, Wang Y (2016) Synthesis and characterization of trifluoromethyl-containing polyimide-modified epoxy resins. J Mater Sci 51:1–16. doi:10.1007/s10853-016-0294-9

    Article  Google Scholar 

  13. Cao L, Zhang MY, Niu HQ et al (2016) Structural relationship between random copolyimides and their carbon fibers. J Mater Sci 52:1–15. doi:10.1007/s10853-016-0477-4

    Article  Google Scholar 

  14. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37:907–974

    Article  Google Scholar 

  15. Zhang Y, Shen J, Li Q et al (2013) Effect of the adding of rod-like attapulgite upon the properties of polyimides produced by random copolycondensation. J Mater Sci 48:4973–4982. doi:10.1007/s10853-013-7281-1

    Article  Google Scholar 

  16. Chen WQ, Li QT, Li PH et al (2015) In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide. J Mater Sci 50:3860–3874. doi:10.1007/s10853-015-8890-7

    Article  Google Scholar 

  17. Li QT, Chen WQ, Yan W et al (2016) In situ solution polymerization for preparation of MDI-modified graphene/hyperbranched poly(ether imide) nanocomposites and their properties. RSC Adv 6:716–729

    Article  Google Scholar 

  18. Ferreira FAS, Amaral T, Ysnaga OAE et al (2016) Structure-property relationship of new polyimide-organically modified silicate-phosphotungstic acid hybrid material system. J Mater Sci 51:1–10. doi:10.1007/s10853-016-9773-2

    Article  Google Scholar 

  19. Li X, Shen G, Jin X, Liu M, Shi L, Lu J (2016) Novel polyimide containing 1,10-phenanthroline and its europium(III) complex: synthesis, characterization, and luminescence properties. J Mater Sci 51:1–7. doi:10.1007/s10853-015-9517-8

    Article  Google Scholar 

  20. Wang CY, Zhao HP, Li G, Jiang JM (2011) Novel fluorinated polyimides derived from an unsymmetrical diamine containing trifluoromethyl and methyl pendant groups. Polym Adv Technol 22:1816–1823

    Article  Google Scholar 

  21. Kim S, Wang X, Ando S, Wang X (2014) Low dielectric and thermally stable hybrid ternary composites of hyperbranched and linear polyimides with SiO2. RSC Adv 4:27267–27276

    Article  Google Scholar 

  22. Hedrick JL, Carter KR, Labadie JW et al (1999) Nanoporous polyimides, vol 141. Springer, Berlin, pp 1–43

    Google Scholar 

  23. Fu GD, Zong BY, Kang ET, Neoh KG, Lin CC, Liaw DJ (2004) Nanoporous low-dielectric constant polyimide films via poly(amic acid)s with RAFT-graft copolymerized methyl methacrylate side chains. Ind Eng Chem Res 43:6723–6730

    Article  Google Scholar 

  24. Taki K, Hosokawa K, Takagi S, Mabuchi H, Ohshima M (2007) Rapid production of ultralow dielectric constant porous polyimide films via CO2-tert-amine zwitterion-induced phase separation and subsequent photopolymerization. Macromolecules 4:2275–2281

    Google Scholar 

  25. Meador MA, Wright S, Sandberg A et al (2012) Low dielectric polyimide aerogels as substrates for lightweight patch antennas. ACS Appl Mater Interfaces 4:6346–6353

    Article  Google Scholar 

  26. Benykhlef S, Bekhoukh A, Berenguer R, Benyoucef A, Morallon E (2016) PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym Sci 294:1–9

    Article  Google Scholar 

  27. Khaldi M, Benyoucef A, Quijada C, Yahiaoui A, Morallon E (2014) Synthesis, characterization and conducting properties of nanocomposites of intercalated 2-aminophenol with aniline in sodium-montmorillonite. J Inorg Organomet Polym 24:267–274

    Article  Google Scholar 

  28. Chouli F, Radja I, Morallon E, Benyoucef A (2015) A novel conducting nanocomposite obtained by p-anisidine and aniline with titanium(IV) oxide nanoparticles: synthesis, characterization, and electrochemical properties. Polym Compos. doi:10.1002/pc.23837

    Google Scholar 

  29. Chouli F, Zehhaf A, Benyoucef A (2014) Preparation and characterization of the new conducting composites obtained from 2-methylaniline and aniline with activated carbon by in situ intercalative oxidative polymerization. Macromol Res 22:26–31

    Article  Google Scholar 

  30. Dahou FZ, Khaldi MA, Zehhaf A, Benyoucef A, Ferrahi MI (2016) Nanocomposite of 2-aminophenol with aniline using copper-montmorillonite: synthesis, characterization, conductivity, and electrochemical study. Adv Polym Technol 35:1–8

    Article  Google Scholar 

  31. Radja I, Djelad H, Morallon E, Benyoucef A (2015) Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth Met 202:25–32

    Article  Google Scholar 

  32. Leu CM, Yaote Chang A, Wei KH (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15:3721–3727

    Article  Google Scholar 

  33. Liao WH, Yang SY, Hsiao ST et al (2014) A novel approach to prepare graphene oxide/soluble polyimide composite films with a low dielectric constant and high mechanical properties. RSC Adv 4:51117–51125

    Article  Google Scholar 

  34. Kim S, Ando S, Wang X (2015) Highly dispersible ternary composites with high transparency and ultra low dielectric constants based on hyperbranched polyimide with organosilane termini and cross-linked polyimide with silica. RSC Adv 5:98419–98428

    Article  Google Scholar 

  35. Huang ZX, Liu S, Yuan Y, Zhao J (2015) High-performance fluorinated polyimide/pure silica zeolite nanocrystal hybrid films with a low dielectric constant. RSC Adv 5:76476–76482

    Article  Google Scholar 

  36. Tavolaro A, Drioli E (1999) Zeolite membranes. Adv Mater 11:975–996

    Article  Google Scholar 

  37. Caro J, Noack M (2008) Zeolite membranes-recent developments and progress. Microporous Mesoporous 115:215–233

    Article  Google Scholar 

  38. Kazemimoghadam M, Mohammadi T (2007) Synthesis of MFI zeolite membranes for water desalination. Desalination 206:547–553

    Article  Google Scholar 

  39. Ahn H, Lee H, Lee SB, Lee Y (2006) Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes. Desalination 193:244–251

    Article  Google Scholar 

  40. Saepurahman, Singaravel GP, Hashaikeh R (2016) Fabrication of electrospun LTL zeolite fibers and their application for dye removal. J Mater Sci 51:1133–1141. doi:10.1007/s10853-015-9444-8

    Article  Google Scholar 

  41. Pei N, Su M, Yu T et al (2016) Fabrication of a highly b-oriented MFI-type zeolite film-modified electrode with molecular sieving properties by Langmuir–Blodgett method. J Mater Sci 51:1–14. doi:10.1007/s10853-015-9638-0

    Article  Google Scholar 

  42. Lin L, Wang C, Nan W, Cao Y, Wang T (2015) The preparation and gas separation properties of zeolite/carbon hybrid membranes. J Mater Sci 50:2561–2570. doi:10.1007/s10853-015-8819-1

    Article  Google Scholar 

  43. Barakov R, Shcherban N, Yaremov P et al (2016) Low-temperature and alkali-free dual template synthesis of micro-mesoporous aluminosilicates based on precursors of zeolite ZSM-5. J Mater Sci 51:4002–4020. doi:10.1007/s10853-015-9719-0

    Article  Google Scholar 

  44. Gonzalez MR, Pereyra AM, Bosch P, Fetter G, Lara VH, Basaldella EI (2016) Structural and morphological evolutions of spent FCC catalyst pellets toward NaA zeolite. J Mater Sci 51:5061–5072. doi:10.1007/s10853-016-9809-7

    Article  Google Scholar 

  45. Cecchini JP, Banús ED, Leonardi SA, Zanuttini MA, Ulla MA, Milt VG (2015) Flexible-structured systems made of ceramic fibers containing Pt-NaY zeolite used as CO oxidation catalysts. J Mater Sci 50:755–768. doi:10.1007/s10853-014-8635-z

    Article  Google Scholar 

  46. Kokotailo GT, Chu P, Lawton SL, Meier WM (1978) Synthesis and structure of synthetic zeolite ZSM-11. Nature 275:119–120

    Article  Google Scholar 

  47. Gonzalez G, Gomes ME, Vitale G, Castro GR (2009) Effect of Al content on phase transitions of zeolite MEL. Microporous Mesoporous 121:26–33

    Article  Google Scholar 

  48. Sharma P, Chung WJ (2011) Synthesis of MEL type zeolite with different kinds of morphology for the recovery of 1-butanol from aqueous solution. Desalination 275:172–180

    Article  Google Scholar 

  49. Zhan Z, Shao J, Peng Y, Wang Z, Yan Y (2014) High performance zeolite NaA membranes synthesized on the inner surface of zeolite/PES–PI blend composite hollow fibers. J Membr Sci 471:299–307

    Article  Google Scholar 

  50. Huang B, Liu Q, Caro J, Huang A (2014) Iso-butanol dehydration by pervaporation using zeolite LTA membranes prepared on 3-aminopropyltriethoxysilane-modified alumina tubes. J Membr Sci 455:200–206

    Article  Google Scholar 

  51. Chen XY, Nik OG, Rodrigue D, Kaliaguine S (2012) Mixed matrix membranes of aminosilanes grafted FAU/EMT zeolite and cross-linked polyimide for CO2/CH4 separation. Polymer 53:3269–3280

    Article  Google Scholar 

  52. Nik OG, Chen XY, Kaliaguine S (2011) Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4 separation. J Membr Sci 379:468–478

    Article  Google Scholar 

  53. Peydayesh M, Asarehpour S, Mohammadi T, Bakhtiari O (2013) Preparation and characterization of SAPO-34-Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chem Eng Res Des 91:1335–1342

    Article  Google Scholar 

  54. Yuan W, Chen H, Chang R, Li L (2011) Synthesis and characterization of high performance NaA zeolite-polyimide composite membranes on a ceramic hollow fiber by dip-coating deposition. Desalination 273:343–351

    Article  Google Scholar 

  55. Hamciuc C, Hamciuc E, Okrasa L, Kalvachev Y (2012) The effect of zeolite L content on dielectric behavior and thermal stability of polyimide thin films. J Mater Sci 47:6354–6365. doi:10.1007/s10853-012-6560-6

    Article  Google Scholar 

  56. Lin L, Zhang C, Liu C et al (2014) Y type zeolites/PI membranes for sulfur-free hydrogen source and for fuel cell applications. Int J Hydrog Energy 39:4704–4709

    Article  Google Scholar 

  57. Nik OG, Nohair B, Kaliaguine S (2011) Aminosilanes grafting on FAU/EMT zeolite: effect on CO2 adsorptive properties. Microporous Mesoporous 143:221–229

    Article  Google Scholar 

  58. Todd MG, Shi FG (2003) Characterizing the interphase dielectric constant of polymer composite materials: Effect of chemical coupling agents. J Appl Phys 94:4551–4557

    Article  Google Scholar 

  59. Kustova MY, Hasselriis P, Christensen CH (2004) Mesoporous MEL-type zeolite single crystal catalysts. Catal Lett 96:205–211

    Article  Google Scholar 

  60. Rubal M Jr, Wilkins CW, Cassidy PE, Lansford C, Yamada Y (2008) Fluorinated polyimide nanocomposites for CO2/CH4 separation. Polym Adv Technol 19:1033–1039

    Article  Google Scholar 

  61. Huang J, Lim PC, Shen L, Pallathadka PK, Zeng K, He C (2005) Cubic silsesquioxane–polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Mater 53:2395–2404

    Article  Google Scholar 

  62. Amp MEL, Vaughan DEW (1987) Proposed synthetic zeolite ECR-1 structure gives a new zeolite framework topology. Nature 329:819–821

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Natural Science Foundation of Hubei Province (2013CFB007), Hubei, China. Authors also acknowledge the Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zushun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, Y., Zhang, S. et al. Novel fluorinated random co-polyimide/amine-functionalized zeolite MEL50 hybrid films with enhanced thermal and low dielectric properties. J Mater Sci 52, 5283–5296 (2017). https://doi.org/10.1007/s10853-017-0768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0768-4

Keywords

Navigation