Skip to main content
Log in

Nonlinear magnetoelectric properties in Ba(Fe0.5Ta0.5)O3 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

BaFe0.5Ta0.5O3ceramics has been successfully prepared by a solid state reaction method and structural analysis revealed that single perovskite phase was obtained in the ceramic sample. Room temperature magnetodielectric and magnetoimpedance properties of ceramics were investigated. Variations in the dielectric permittivity, loss tangent and impedance were evident. This confirms that a room temperature magnetoelectric effect can be obtained in BaFe0.5Ta0.5O3 ceramics. Also, a higher grain boundary contribution than a grain contribution in the magnetoelectric effect was confirmed. The magnetoelectric voltage response as a function of Hbias suggested a room temperature nonlinear magnetoelectric coupling in BaFe0.5Ta0.5O3 ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. X.X. Shi, X.Q. Liu, X.M. Chen, Readdressing of magnetoelectric effect in bulk BiFeO3. Adv. Funct. Mater. 27, 1604037 (2017). https://doi.org/10.1002/adfm.201604037

    Article  CAS  Google Scholar 

  2. M. Habib, M.H. Lee, D.J. Kim, H.I. Choi, M.H. Kim, W.J. Kim, T.K. Song, Ferroelectric and piezoelectric properties of BiFeO3-based piezoelectric ceramics. Phys. Status. Solidi. (a) 217, 1900984 (2020). https://doi.org/10.1002/pssa.201900984

    Article  CAS  Google Scholar 

  3. I.M. Reaney, J. Petzelt, V.V. Voitsekhovskii, F. Chu, N. Setter, Bsite order and infrared reflectivity in A(B′B″)O3 complex perovskiteceramics. J. Appl. Phys. 76, 2086–2092 (1994). https://doi.org/10.1063/1.357618

    Article  CAS  Google Scholar 

  4. M. Ganguly, S. Parida, E. Sinha, S.K. Rout, A.K. Simanshu, A. Hussain, I.W. Kim, Structural, dielectric and electrical properties of BaFe0.5Nb0.5O3 ceramic prepared by solid-state reaction technique. Mater. Chem. Phys. 131, (2011) 535–539. https://doi.org/10.1016/j.matchemphys.2011.10.017.

  5. R. Pirc, R. Blinc, Nonlinear magnetoelectric effect in magnetically disordered relaxor ferroelectrics. Ferroelectrics 400, 387–394 (2010). https://doi.org/10.1080/00150193.2010.505861

    Article  CAS  Google Scholar 

  6. A. Levstik, V. Bobnar, C. Filipic, J. Holc, M. Kosec, R. Blinc, Z. Trontelj, Z. Jaglicic, Magnetoelectric relaxor. Appl. Phys. Lett. 91, 12905 (2007). https://doi.org/10.1063/1.2754354

    Article  CAS  Google Scholar 

  7. S. Ke, H. Huang, H. Fan, H.L.W. Chan, L.M. Zhou, Colossal dielectric response in barium iron niobate ceramics obtained by different precursors. Ceram. Inter. 34(4), 1059–1062 (2008). https://doi.org/10.1016/j.ceramint.2007.09.079

    Article  CAS  Google Scholar 

  8. Y.Y. Liu, X.M. Chen, X.Q. Liu, L. Li, Giant dielectric response and relaxor behaviors induced by charge and defect ordering in Sr(Fe1∕2Nb1∕2)O3 ceramics. Appl. Phys. Lett. 90, 192905 (2007). https://doi.org/10.1063/1.2737905

    Article  CAS  Google Scholar 

  9. Y.Y. Liu, X.M. Chen, X.Q. Liu, L. Li, Dielectric relaxations in Ca(Fe1/2Nb1/2)O3 complex perovskite ceramics. Appl. Phys. Lett. 90, 262904 (2007). https://doi.org/10.1063/1.2752729

    Article  CAS  Google Scholar 

  10. T. Phatungthane, G. Rujijanagul, K. Pengpat, S. Eitssayeam, T. Tunkasiri, L.F. Cotica, R. Guo, A.S. Bhalla, Dielectric and impedance measurements on (1–x)Ba(Fe1/2Ta1/2)O3-xBa(Zn1/3Ta2/3)O3 ceramics. Curr. Appl. Phys. 14, 1819 (2014). https://doi.org/10.1016/j.cap.2014.09.026

    Article  Google Scholar 

  11. Z. Wang, X.M. Chen, Ferromagnetic and antiferromagnetic behaviour in Ba(Fe0.5Ta0.5)O3 ceramics. J. Phys. D. Appl. Phys. 42, (2009) 175005. https://doi.org/10.1088/0022-3727/42/17/175005

  12. C.E.D. Toro, K.A.M. Pulido, J.A. Rodríguez, D.A.L. Téllez, J.R. Rojas, Superexchange Ferromagnetic Coupling and Thermodynamic Features of the La2FeCoO6 Semiconductor. J. Low Temp. Phys. 206, 269–280 (2021). https://doi.org/10.1007/s10909-021-02649-w

    Article  CAS  Google Scholar 

  13. X. Lv, X.Q. Liu, H.J. Zhao, W.Z. Yang, X.M. Chen, Dielectric and magnetic properties of Sr(Fe1/2Ta1/2)O3 complex perovskite ceramics. J. Am. Ceram. Soc. 96, 1188–1192 (2013). https://doi.org/10.1111/jace.12162

    Article  CAS  Google Scholar 

  14. F. Galasso, L. Katz, R. Ward, Substitution in the octahedrally coördinated cation positions in compounds of the perovskite type1,2. J. Am. Chem. Soc. 81, 820–823 (1959). https://doi.org/10.1021/ja01513a018

    Article  CAS  Google Scholar 

  15. F. Galasso, W. Darby, Ordering of the octahedrally coördinated cation position in the perovskite structure. J Phys Chem-Us 66, 131 (1962). https://doi.org/10.1021/j100807a028

    Article  CAS  Google Scholar 

  16. W.H. Jung, J.H. Lee, J.H. Sohn, H.D. Nam, S.H. Cho, Dielectric loss anomaly in Ba(Fe1/2Ta1/2)O3 ceramics. Mater. Lett. 56, 334 (2002). https://doi.org/10.1016/S0167-577X(02)00478-0

    Article  CAS  Google Scholar 

  17. Z. Wang, X.M. Chen, L. Ni, Y.Y. Liu, X.Q. Liu, Dielectric relaxations in Ba(Fe1/2Ta1/2)O3 giant dielectric constant ceramics. Appl. Phys. Lett. 90, 102905 (2007). https://doi.org/10.1063/1.2711767

    Article  CAS  Google Scholar 

  18. T. Phatungthane, P. Jaita, R. Sanjoom, T. Tunkasiri, G. Rujijanagul, Dielectric properties of Sr1-xBaxFe0.5Nb0.5O3; (x = 0.0, 0.1 and 0.2) ceramics prepared by the molten salt technique and their electrode effects. Surf. & Coat. Tech. 306 (2016) 229–235. https://doi.org/10.1016/j.surfcoat.2016.06.004

  19. L. Liu, H. Fan, X. Chen, P. Fang, Electrical properties and microstructural characteristics of nonstoichiometric CaCu3xTi4O12 ceramics. J. Alloys. Comp. 469(1–2), 529–534 (2009). https://doi.org/10.1016/j.jallcom.2008.02.042

  20. A. Dutta, T.P. Sinha, Structural and dielectric properties of A(Fe1/2Ta1/2)O3 [A = Ba, Sr, Ca]. Mater. Res. Bull. 46, 518–524 (2011). https://doi.org/10.1016/j.materresbull.2011.01.003

    Article  CAS  Google Scholar 

  21. S.M. Ke, H.Q. Fan, H.T. Huang, Dielectric relaxation in A2FeNbO6 (A=Ba, Sr, and Ca) perovskite ceramics. J. Electroceram. 22, 252–256 (2009). https://doi.org/10.1007/s10832-007-9353-6

    Article  CAS  Google Scholar 

  22. M. Li, A. Feteira, D.C. Sinclair, Origin of the high permittivity in (La0.4Ba0.4Ca0.2)(Mn0.4Ti0.6)O3 ceramics. J. Appl. Phys. 98, (2005). 084101. https://doi.org/10.1063/1.2089159

  23. T.B. Adams, D.C. Sinclair, A.R. West, Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B 73, 094124 (2006). https://doi.org/10.1103/PhysRevB.73.094124

    Article  CAS  Google Scholar 

  24. P. Pahujaa, R.P. Tandon, Latest advancement in magnetoelectric multiferroic composites Ferroelectrics 569, 108 (2020). https://doi.org/10.1080/00150193.2020.1791660

    Article  CAS  Google Scholar 

  25. Y. Shen, J. Gao, Y. Wang, P. Finkel, J. Li, D. Viehland, Piezomagnetic strain-dependent non-linear magnetoelectric response enhancement by flux concentration effectApplied. Phys. Lett. 102, 172904 (2013). https://doi.org/10.1063/1.4803660

    Article  CAS  Google Scholar 

  26. S. Manotham, P. Butnoi, P. Jaita, S. Pinitsoontorn, D. Sweatman, S. Eitssayeam, K. Pengpat, G. Rujijanagul, J. Electron. Mater. 45, 5948 (2016). https://doi.org/10.1007/s11664-016-4811-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Thailand Research Fund (TRF, MRG6180219), Division of Science, Faculty of Education, Nakhon Phanom University, Materials Science Research Center, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University and Department of Integrated Engineering, Establishment Project Faculty of Integrated Engineering and Technology, Chanthaburi Campus, Rajamangala University of Technology Tawan-ok Chanthaburi Campus is also acknowledged.

Funding

This work was supported by The Thailand Research Fund (Grant numbers TRF, MRG6180219).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Thanatep Phatungthane, Ratabongkot Sanjoom, Luiz F. Cotica3 and Gobwute Rujijanagul. The first draft of the manuscript was written by Thanatep Phatungthane and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thanatep Phatungthane.

Ethics declarations

Ethical approval

Ethical approval is not applicable for this article.

Informed Consent

There are no human subjects in this article and informed consent is not applicable.

Statement regarding research involving human participants and/or animals

This article does not contain any studies with human or animal subjects.

Competing interests

Authors declare no conflict of interests for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phatungthane, T., Sanjoom, R., Cotica, L.F. et al. Nonlinear magnetoelectric properties in Ba(Fe0.5Ta0.5)O3 ceramics. J Electroceram 51, 292–298 (2023). https://doi.org/10.1007/s10832-023-00337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-023-00337-7

Keywords

Navigation