Skip to main content
Log in

Dielectric and Magnetic Properties of Ba(Fe1/2Ta1/2)O3-BiFeO3 Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The properties of (1–x)Ba(Fe1/2Ta1/2)O3-xBiFeO3 [(1–x)BFT-xBFO] (x = 0.0, 0.1, 0.3, 0.5) ceramics have been investigated. (1–x)BFT-xBFO powders were synthesized by a modified two-step calcination technique, and ceramics were fabricated by a conventional technique. X-ray diffraction (XRD) analysis revealed that the modified ceramics exhibited a mixture of BFT cubic phase and BFO rhombohedral phase. The peaks shift increased with increasing BFO content to a maximum value for the composition with x = 0.5. The overall shift of the XRD patterns indicated distortion of the unit cell, which may be due to ions from BFO entering the BFT lattice. BFO additive promoted grain growth, while the maximum density of the studied ceramics was observed for the x = 0.1 composition. The modified ceramics presented enhanced thermal and frequency stability of the dielectric constant. BFO additive also reduced the loss tangent for the system. Improvement of the magnetic behavior was observed after adding BFO. Furthermore, all the ceramics, including pure BFT (a nonmagnetic phase at room temperature), presented a magnetocapacitance effect, which can be related to magnetoresistance along with Maxwell–Wagner polarization effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dutta and T.P. Sinha, Mater. Res. Bull. 46, 518 (2011).

    Article  Google Scholar 

  2. Z. Wang, X.M. Chen, L. Ni, Y.Y. Liu, and X.Q. Liu, Appl. Phys. Lett. 90, 102905 (2007).

    Article  Google Scholar 

  3. W.H. Jung, J.H. Lee, J.H. Sohn, H.D. Nam, and S.H. Cho, Mater. Lett. 56, 334 (2002).

    Article  Google Scholar 

  4. C.Y. Chung and Y.H. Chang, J. Appl. Phys. 96, 6624 (2004).

  5. S. Saha and T.P. Sinha, J. Appl. Phys. 99, 014109 (2006).

  6. T. Phatungthane, G. Rujijanagul, K. Pengpat, S. Eitssayeam, T. Tunkasiri, L.F. Cotica, R. Guo, and A.S. Bhalla, Curr. Appl. Phys. 14, 1819 (2014).

    Article  Google Scholar 

  7. Y.L. Chai, C.S. His, Y.T. Lin, and Y.S. Chang, J. Alloys Compd. 588, 248 (2014).

    Article  Google Scholar 

  8. G. Li, S. Liu, F. Liao, S. Tian, X. Jing, J. Lin, Y. Uesu, K. Kohn, K. Saitoh, M. Terauchi, N. Di, and Z. Cheng, J. Solid State Chem. 177, 1695 (2004).

    Article  Google Scholar 

  9. C. Chen, J. Cheng, S. Yu, L. Che, and Z. Meng, J. Cryst. Growth 291, 135 (2006).

    Article  Google Scholar 

  10. Y. Du, Z.X. Cheng, X.L. Wang, P. Liu, and S.X. Dou, J. Appl. Phys. 109, 07B507 (2011).

    Google Scholar 

  11. R.E. Melgarejo, M.S. Tomar, R. Guzman, and S.P. Singh, Ferroelectrics 324, 101 (2005).

    Article  Google Scholar 

  12. M.Y. Shami, M.S. Awan, and M.A. Rehman, J. Alloys Compd. 509, 10139 (2011).

    Article  Google Scholar 

  13. W. Cai, S. Zhong, C. Fu, G. Chen, and X. Deng, Mater. Res. Bull. 50, 259 (2014).

    Article  Google Scholar 

  14. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, and D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014).

    Article  Google Scholar 

  15. H. Shokrollahi, Powder. Technol. 235, 953 (2013).

    Article  Google Scholar 

  16. M.S. Bernardo, T. Jardiel, M. Peiteado, A.C. Caballero, and M. Villegas, J. Alloys Compd. 509, 7290 (2011).

    Article  Google Scholar 

  17. G. Catalan and J.F. Scott, Adv. Mater. 21, 2463 (2009).

    Article  Google Scholar 

  18. W.N. Su, D.H. Wang, Q.Q. Cao, Z.D. Han, J. Yin, J.R. Zhang, and Y.W. Du, Appl. Phys. Lett. 91, 092905 (2007).

    Article  Google Scholar 

  19. S. Godara and B. Kumar, Ceram. Int. 41, 6912 (2015).

    Article  Google Scholar 

  20. K. Chakrabarti, B. Sarkar, V.D. Ashok, S.S. Chaudhuri, and S.K. De, J. Magn. Magn. Mater. 381, 271 (2015).

    Article  Google Scholar 

  21. D. Lin, K.W. Kwok, and H.L.W. Chan, Ceram. Int. 40, 1335 (2014).

    Article  Google Scholar 

  22. V.F. Freitas, L.F. Cótica, I.A. Santos, D. Garcia, and J.A. Eiras, J. Eur. Ceram. Soc. 31, 2965 (2011).

    Article  Google Scholar 

  23. R.N.P. Choudhary, K. Perez, P. Bhattacharya, and R.S. Katiyar, Mater. Chem. Phys. 105, 286 (2007).

    Article  Google Scholar 

  24. E.V. Ramana, S.V. Suryanarayana, and T.B. Sankaram, Solid State Sci. 12, 956 (2010).

    Article  Google Scholar 

  25. Q. Hang, Z. Xing, X. Zhu, M. Yu, Y. Song, J. Zhu, and Z. Liu, Ceram. Int. 38S, S411 (2012).

    Article  Google Scholar 

  26. S. Sharma, V. Singh, R.K. Dwivedi, R. Ranjan, A. Anshul, S.S. Amritphale, and N. Chandra, J. Appl. Phys. 115, 224106 (2014).

    Article  Google Scholar 

  27. K. Sanjoom and G. Rujijanagul, Ferroelectrics, 454, 51 (2013).

  28. N. Itoh, T. Shimura, W. Sakamoto, and T. Yogo, Ferroelectrics, 356, 19 (2007).

  29. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, and L. Jastrabik, J. Appl. Phys. 93, 4130 (2003).

  30. A.A. Zatsiupa, L.A. Bashkirov, I.O. Troyanchuk, G.S. Petrov, A.I. Galyas, L.S. Lobanovsky, and S.V. Truhanov, J. Solid State Chem. 212, 147 (2014).

    Article  Google Scholar 

  31. J.K. Kim, S.S. Kim, and W.J. Kim, Mater. Lett. 59, 4006 (2005).

    Article  Google Scholar 

  32. M. Sakar, S. Balakumar, P. Saravanan, and S.N. Jaisankar, Mater. Res. Bull. 48, 2878 (2013).

    Article  Google Scholar 

  33. X. Chao, Z. Yang, Z. Li, and Y. Li, J. Alloys Compd. 518, 1 (2012).

    Article  Google Scholar 

  34. K. Sanjoom, K. Pengpat, S. Eitssayeam, T. Tunkasiri, and G. Rujijanagul, Phys. Status Solidi A 211, 1720 (2014).

    Article  Google Scholar 

  35. K. Singh, S.A. Band, and W.K. Kinge, Ferroelectrics 306, 179 (2004).

    Article  Google Scholar 

  36. R.K. Dwivedi, D. Kumar, and O. Parkash, J. Phys. D Appl. Phys. 33, 88 (2000).

    Article  Google Scholar 

  37. W. Xia, C.C. Wang, P. Liu, J.L. Ye, and W. Ni, Curr. Appl. Phys. 13, 1743 (2013).

    Article  Google Scholar 

  38. Y.Y. Liu, X.M. Chen, X.Q. Liu, and L. Li, Appl. Phys. Lett. 90, 192905 (2007).

    Article  Google Scholar 

  39. F.D. Morrison, D.C. Sinclair, and A.R. West, J. Am. Ceram. Soc. 84, 531 (2001).

    Article  Google Scholar 

  40. Y.J. Li, X.M. Chen, R.Z. Hou, and Y.H. Tang, Solid State Commun. 137, 120 (2006).

  41. P. Sharma and V. Verma, J. Magn. Magn. Mater. 374, 18 (2015).

    Article  Google Scholar 

  42. H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, and M.J. Reece, J. Adv. Dielectr. 1, 107 (2011).

    Article  Google Scholar 

  43. M. Rawat and K.L. Yadav, J. Alloys Compd. 597, 188 (2014).

    Article  Google Scholar 

  44. J. Rani, K.L. Yadav, and S. Prakash, Mater. Res. Bull. 60, 367 (2014).

    Article  Google Scholar 

  45. G. Catalan, Appl. Phys. Lett. 88, 102902 (2006).

    Article  Google Scholar 

  46. Q. Fu, F. Xue, Z. Zheng, D. Zhou, L. Zhou, Y. Tian, and Y. Hu, Ceram. Int. 41, 4050 (2015).

    Article  Google Scholar 

  47. P.K. Patel, K.L. Yadav, H. Singh, and A.K. Yadav, J. Alloys Compd. 591, 224 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rujijanagul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manotham, S., Butnoi, P., Jaita, P. et al. Dielectric and Magnetic Properties of Ba(Fe1/2Ta1/2)O3-BiFeO3 Ceramics. J. Electron. Mater. 45, 5948–5955 (2016). https://doi.org/10.1007/s11664-016-4811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4811-z

Keywords

Navigation