Skip to main content

Advertisement

Log in

Outcomes of accelerated corneal cross-linking for pediatric and adult keratoconus: a comparative study

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To compare the visual, refractive, and topographic outcomes of a high irradiance accelerated corneal crosslinking (ACXL) protocol after a 12-month follow-up between pediatric and adult patients with progressive keratoconus (KC).

Methods

Retrospective, comparative, cohort study. Patients with KC were divided into two groups: pediatric (≤ 18 years) and adult (> 18 years). All of them were managed with epi-OFF ACXL (30 mW/cm2, 8 min, pulsed 1:1 on and off = 7.2 J/cm2). Visual, refractive, and topographic values were measured preoperatively and at 1, 3, 6, and 12 months postoperative. KC progression, defined as a Kmax increase of  ≥ 1D during follow-up, was recorded.

Results

Eighty-nine eyes (53 patients) were included for analysis; 45 (50.6%) eyes were from pediatric patients and 44 (49.4%) from adults. At one-year follow-up, pediatric patients experienced significantly higher rates of progression (22.2% vs. 4.5%, p = .014). Contrariwise, female gender (Beta = − 3.62, p = .018), a baseline uncorrected visual acuity of Snellen ≥ 20/60 (Beta = − 5.96, p = .007), and being ≥ 15 years at ACXL treatment (Beta = − 0.31, p = .021) were associated with non-progressive disease. A significant improvement in best-corrected visual acuity, Kmin, Km, and Kmax was recorded in both groups. Overall, 86.5% of eyes from both groups showed Kmax stabilization or improvement.

Conclusions

Despite the similarity in visual, refractive, and topographic outcomes in both groups, younger age was associated with KC progression after ACXL at one year of follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Naderan M, Rajabi MT, Zarrinbakhsh P, Farjadnia M (2017) Is keratoconus more severe in pediatric population? Int Ophthalmol 37:1169–1173. https://doi.org/10.1007/s10792-016-0382-5

    Article  PubMed  Google Scholar 

  2. Chatzis N, Hafezi F (2012) Progression of keratoconus and efficacy of pediatric [corrected] corneal collagen cross-linking in children and adolescents. J Refract Surg 28:753–758. https://doi.org/10.3928/1081597X-20121011-01

    Article  PubMed  Google Scholar 

  3. Ertan A, Muftuoglu O (2008) Keratoconus clinical findings according to different age and gender groups. Cornea 27:1109–1113. https://doi.org/10.1097/ICO.0b013e31817f815a

    Article  PubMed  Google Scholar 

  4. Reeves SW, Stinnett S, Adelman RA, Afshari NA (2005) Risk factors for progression to penetrating keratoplasty in patients with keratoconus. Am J Ophthalmol 140:607–611. https://doi.org/10.1016/j.ajo.2005.05.029

    Article  PubMed  Google Scholar 

  5. Mukhtar S, Ambati BK (2018) Pediatric keratoconus: a review of the literature. Int Ophthalmol 38:2257–2266. https://doi.org/10.1007/s10792-017-0699-8

    Article  PubMed  Google Scholar 

  6. Saglik A, Ozcan G, Ucakhan O (2021) Risk factors for progression following corneal collagen crosslinking in keratoconus. Int Ophthalmol 41:3443–3449. https://doi.org/10.1007/s10792-021-01908-9

    Article  PubMed  Google Scholar 

  7. Kamaev P, Friedman MD, Sherr E, Muller D (2012) Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci 53:2360–2367. https://doi.org/10.1167/iovs.11-9385

    Article  PubMed  Google Scholar 

  8. Godefrooij DA, Soeters N, Imhof SM, Wisse RP (2016) Corneal cross-linking for pediatric keratoconus: long-term results. Cornea 35:954–958. https://doi.org/10.1097/ICO.0000000000000819

    Article  PubMed  Google Scholar 

  9. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Denaro R (2011) Age-related long-term functional results after riboflavin UV A corneal cross-linking. J Ophthalmol 2011:608041. https://doi.org/10.1155/2011/608041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vinciguerra P, Albe E, Frueh BE, Trazza S, Epstein D (2012) Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. Am J Ophthalmol 154:520–526. https://doi.org/10.1016/j.ajo.2012.03.020

    Article  PubMed  Google Scholar 

  11. Soeters N, van der Valk R, Tahzib NG (2014) Corneal cross-linking for treatment of progressive keratoconus in various age groups. J Refract Surg 30:454–460. https://doi.org/10.3928/1081597X-20140527-03

    Article  PubMed  Google Scholar 

  12. Ucakhan OO, Celik Buyuktepe T, Yavuz Z, Asbell PA (2021) Pediatric versus adult corneal collagen crosslinking: long-term visual, refractive, tomographic and aberrometric outcomes. Curr Eye Res 46:14–22. https://doi.org/10.1080/02713683.2020.1782940

    Article  PubMed  Google Scholar 

  13. Shetty R, Nagaraja H, Jayadev C, Pahuja NK, Kurian Kummelil M, Nuijts RM (2014) Accelerated corneal collagen cross-linking in pediatric patients: two-year follow-up results. Biomed Res Int 2014:894095. https://doi.org/10.1155/2014/894095

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ozgurhan EB, Kara N, Cankaya KI, Kurt T, Demirok A (2014) Accelerated corneal cross-linking in pediatric patients with keratoconus: 24-month outcomes. J Refract Surg 30:843–849. https://doi.org/10.3928/1081597X-20141120-01

    Article  PubMed  Google Scholar 

  15. Ulusoy DM, Goktas E, Duru N, Ozkose A, Atas M, Yuvaci I, Arifoglu HB, Zararsiz G (2017) Accelerated corneal crosslinking for treatment of progressive keratoconus in pediatric patients. Eur J Ophthalmol 27:319–325. https://doi.org/10.5301/ejo.5000848

    Article  PubMed  Google Scholar 

  16. Badawi AE (2017) Accelerated corneal collagen cross-linking in pediatric keratoconus: one year study. Saudi J Ophthalmol 31:11–18. https://doi.org/10.1016/j.sjopt.2017.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sarac O, Caglayan M, Uysal BS, Uzel AGT, Tanriverdi B, Cagil N (2018) Accelerated versus standard corneal collagen cross-linking in pediatric keratoconus patients: 24 months follow-up results. Cont Lens Anterior Eye 41:442–447. https://doi.org/10.1016/j.clae.2018.06.001

    Article  PubMed  Google Scholar 

  18. Eissa SA, Yassin A (2019) Prospective, randomized contralateral eye study of accelerated and conventional corneal cross-linking in pediatric keratoconus. Int Ophthalmol 39:971–979. https://doi.org/10.1007/s10792-018-0898-y

    Article  PubMed  Google Scholar 

  19. Iqbal M, Elmassry A, Saad H, Am Gad A, Ibrahim O, Hamed N, Saeed AASK, Tawfik M, Said A, Amer I, Nooreldin A, Said O, Reffat M, Anwar S, Badawi A (2020) Standard cross-linking protocol versus accelerated and transepithelial cross-linking protocols for treatment of paediatric keratoconus: a 2-year comparative study. Acta Ophthalmol 98:e352–e362. https://doi.org/10.1111/aos.14275

    Article  PubMed  Google Scholar 

  20. Ozer MD, Batur M, Mesen S, Tekin S, Seven E, Yasar T (2020) Comparison of the efficacy of accelerated corneal cross-linking therapy in different pediatric age groups having progressive keratoconus. Int Ophthalmol 40:2651–2658. https://doi.org/10.1007/s10792-020-01446-w

    Article  PubMed  Google Scholar 

  21. Agca A, Tulu B, Yasa D, Kepez Yildiz B, Sucu ME, Genc S, Fazil K, Yildirim Y (2020) Accelerated corneal crosslinking in children with keratoconus: 5-year results and comparison of 2 protocols. J Cataract Refract Surg 46:517–523. https://doi.org/10.1097/j.jcrs.0000000000000101

    Article  PubMed  Google Scholar 

  22. Salman A, Darwish T, Ghabra M, Kailani O, Khalil H, Shaaban R (2021) Clinical outcomes of accelerated corneal cross-linking for pediatric keratoconus. J Ophthalmol 2021:1851883. https://doi.org/10.1155/2021/1851883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cinar Y, Han CC, Sahin A, Syed ZA (2021) Long term results of accelerated corneal collagen cross-linking in pediatric keratoconus. Eur J Ophthalmol 31:3494–3499. https://doi.org/10.1177/11206721211018362

    Article  PubMed  Google Scholar 

  24. Hernandez-Camarena JC, Graue-Hernandez EO, Loya-Garcia D, Ruiz-Lozano RE, Valdez-Garcia JE (2019) Correlation between corneal stromal demarcation line depth and topographic outcomes after two pulsed-light-accelerated crosslinking protocols. Clin Ophthalmol 13:1665–1673. https://doi.org/10.2147/OPTH.S206103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kobashi H, Hieda O, Itoi M, Kamiya K, Kato N, Shimazaki J, Tsubota K (2021) The keratoconus study group of corneal cross-linking for paediatric keratoconus: a systematic review and meta-analysis. J Clin Med. https://doi.org/10.3390/jcm10122626

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hammer A, Richoz O, Arba Mosquera S, Tabibian D, Hoogewoud F, Hafezi F (2014) Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci 55:2881–2884. https://doi.org/10.1167/iovs.13-13748

    Article  PubMed  Google Scholar 

  27. Kamiya K, Shimizu K, Ohmoto F (2009) Effect of aging on corneal biomechanical parameters using the ocular response analyzer. J Refract Surg 25:888–893. https://doi.org/10.3928/1081597X-20090917-10

    Article  PubMed  Google Scholar 

  28. Nucci C, Cofini V, Mancino R, Ricci F, Martucci A, Cecilia MR, Ciciarelli V, Zazzara F, Cedrone C, di Orio F (2016) Prevalence and risk factors of vision impairment among children of employees of Telecom, Italy. Eur J Ophthalmol 26:379–384. https://doi.org/10.5301/ejo.5000733

    Article  PubMed  Google Scholar 

  29. Elmassry A, Said Ahmed OI, Abdalla MF, Gaballah K (2021) Ten years experience of corneal collagen cross-linking: an observational study of 6120 cases. Eur J Ophthalmol 31:951–958. https://doi.org/10.1177/1120672120928921

    Article  PubMed  Google Scholar 

  30. Meyer JJ, Gokul A, Vellara HR, McGhee CNJ (2021) Progression of keratoconus in children and adolescents. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2020-316481

    Article  PubMed  Google Scholar 

  31. Fink BA, Sinnott LT, Wagner H, Friedman C, Zadnik K, Group CS (2010) The influence of gender and hormone status on the severity and progression of keratoconus. Cornea 29:65–72. https://doi.org/10.1097/ICO.0b013e3181ac0518

    Article  PubMed  Google Scholar 

  32. Karamichos D, Escandon P, Vasini B, Nicholas SE, Van L, Dang DH, Cunningham RL, Riaz KM (2021) Anterior pituitary, sex hormones, and keratoconus: Beyond traditional targets. Prog Retin Eye Res. https://doi.org/10.1016/j.preteyeres.2021.101016

    Article  PubMed  PubMed Central  Google Scholar 

  33. McKay TB, Hjortdal J, Sejersen H, Asara JM, Wu J, Karamichos D (2016) Endocrine and metabolic pathways linked to keratoconus: implications for the role of hormones in the stromal microenvironment. Sci Rep 6:25534. https://doi.org/10.1038/srep25534

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ucakhan OO, Bayraktutar BN, Saglik A (2016) Pediatric corneal collagen cross-linking: long-term follow-up of visual, refractive, and topographic outcomes. Cornea 35:162–168. https://doi.org/10.1097/ICO.0000000000000702

    Article  PubMed  Google Scholar 

  35. Mazzotta C, Traversi C, Baiocchi S, Bagaglia S, Caporossi O, Villano A, Caporossi A (2018) Corneal collagen cross-linking with riboflavin and ultraviolet a light for pediatric keratoconus: ten-year results. Cornea 37:560–566. https://doi.org/10.1097/ICO.0000000000001505

    Article  PubMed  Google Scholar 

  36. Meiri Z, Keren S, Rosenblatt A, Sarig T, Shenhav L, Varssano D (2016) Efficacy of corneal collagen cross-linking for the treatment of keratoconus: a systematic review and meta-analysis. Cornea 35:417–428. https://doi.org/10.1097/ICO.0000000000000723

    Article  PubMed  Google Scholar 

  37. Vinciguerra R, Romano MR, Camesasca FI, Azzolini C, Trazza S, Morenghi E, Vinciguerra P (2013) Corneal cross-linking as a treatment for keratoconus: four-year morphologic and clinical outcomes with respect to patient age. Ophthalmology 120:908–916. https://doi.org/10.1016/j.ophtha.2012.10.023

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

ABA, JCHC, and JEVG participated in the study design. RERL and LARG collected the data. ABA and JCHC participated in the analysis of data. JCHC, ARG, and JEVG participated in the clinical management of the patients enrolled in the study. ABA and RERL wrote the main manuscript text and created the tables. JCHC, ARG, and JEVG edited the manuscript. JCHC, ARG, and JEVG supervised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jorge E. Valdez-Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflicts of interest nor financial disclosures.

Availability of data and material

Data of this study is available upon request from the corresponding author. The data are not publicly available because the study was approved under informed consent for research purposes, protecting their privacy, prohibiting sharing information with third parties according to the Mexican General Law for the Protection of Personal Data in Possession of Obliged Parties.

Code availability

Not applicable.

Ethics approval

The Ethics (License No. P000474-CXLPED-CEIC-CR001) and Research (License No. P000474-CXLPED-CI-CR001) Committees of our institution (License No. CONBIOETICA 19-CEI-011-2016-10-17 and COFEPRIS 20-CI-19-039-002, respectively), previously approved the study following the tenets of the Declaration of Helsinki.

Informed consent statement

Participants and legal tutors of underage (≤ 18 years) patients provided written informed consent.

Consent for publication

Not applicable.

Publication history

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante-Arias, A., Hernandez-Camarena, J.C., Rodriguez-Garcia, A. et al. Outcomes of accelerated corneal cross-linking for pediatric and adult keratoconus: a comparative study. Int Ophthalmol 44, 145 (2024). https://doi.org/10.1007/s10792-024-03080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10792-024-03080-2

Keywords

Navigation