Skip to main content
Log in

Thermophysical Properties of the 2-Methylpropan-1-ol + Cyclohexane + Benzene Ternary System and Its Binary Subsystems Within the Temperature Range (293.15–333.15) K and Under Ambient Pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental densities ρ and sound speeds u at temperatures (293.15, 298.15, 303.15, 313.15, 323.15, and 333.15) K and under ambient pressure are reported for the first time for the ternary system (2-methylpropan-1-ol + cyclohexane + benzene) covering the entire composition ranges. The corresponding binary subsystems (2-methylpropan-1-ol + cyclohexane), (2-methylpropan-1-ol + benzene), and (cyclohexane + benzene) have also been studied. The experimental data were used to derive excess thermodynamic properties, namely excess molar volumes \({V}_{m}^{E}\) and excess isentropic compressibilities \({\kappa }_{S}^{E}\). The variation of \({V}_{m}^{E}\) and \({\kappa }_{S}^{E}\) with composition and temperature have been interpreted in terms of molecular interactions between the components of the mixture. The Redlich–Kister polynomial was used to correlate the excess thermodynamic properties of the studied binary mixtures. The Cibulka equation was the mathematical model of choice to correlate the ternary excess properties. Furthermore, the Jouyban–Acree model was used to mathematically represent the density and sound speed of the studied mixtures at different temperatures. The accuracy of the Jouban–Acree model was evaluated, and the absolute average deviation (APD) for density and sound speed of the binary mixtures was less than 0.07 % and 0.21 %, respectively. The APDs for density and sound speed of the ternary mixture were 0.30 % and 0.64 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. F. Aliaj, N. Syla, A. Kurtishaj, N. Elezaj, Z. Tolaj, T. Arbneshi, A. Zeqiraj, Int. J. Thermophys. 41, 49 (2020). https://doi.org/10.1007/s10765-020-02632-9

    Article  ADS  Google Scholar 

  2. T. Arbneshi, A. Qerimi, A. Zeqiraj, N. Syla, F.R. Aliaj, J. Chem. Eng. Data 67, 2098 (2022). https://doi.org/10.1021/ACS.JCED.2C00093

    Article  Google Scholar 

  3. A. Ali, A.K. Nain, B. Lal, D. Chand, Int. J. Thermophys. 25, 1835 (2004). https://doi.org/10.1007/s10765-004-7738-1

    Article  ADS  Google Scholar 

  4. J.G. Speight, Fuel Science and Technology Handbook (Marcel Dekker, New York, 1990)

    Google Scholar 

  5. F. Aliaj, A. Zeqiraj, Phys. Chem. Liq. (2023). https://doi.org/10.1080/00319104.2023.2188213

    Article  Google Scholar 

  6. A. Jouyban, J. Soleymani, F. Jafari, M. Khoubnasabjafari, W.E. Acree, J. Chem. Eng. Data 58, 1523 (2013). https://doi.org/10.1021/je301057g

    Article  Google Scholar 

  7. W.M.D. Wan Normazlan, N.A. Sairi, Y. Alias, A.F. Udaiyappan, A. Jouyban, M. Khoubnasabjafari, J. Chem. Eng. Data 59, 2337 (2014). https://doi.org/10.1021/je400576e

    Article  Google Scholar 

  8. A. Jouyban, M. Khoubnasabjafari, Z. Vaez-Gharamaleki, Z. Fekari, W.E. Acree, Chem. Pharm. Bull. 53, 519 (2005). https://doi.org/10.1248/cpb.53.519

    Article  Google Scholar 

  9. O. Redlich, A.T. Kister, Ind. Eng. Chem. 40, 345 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  10. I. Cibulka, Collect. Czechoslov. Chem. Commun. 47, 1414 (1982). https://doi.org/10.1135/cccc19821414

    Article  Google Scholar 

  11. N.I. Malek, S.P. Ijardar, S.B. Oswal, Thermochim. Acta 539, 71 (2012). https://doi.org/10.1016/j.tca.2012.04.002

    Article  Google Scholar 

  12. K. Tamura, S. Murakami, J. Chem. Thermodyn. 16, 33 (1984). https://doi.org/10.1016/0021-9614(84)90072-7

    Article  Google Scholar 

  13. B. González, I. Domínguez, E.J. González, Á. Domínguez, J. Chem. Eng. Data 55, 1003 (2010). https://doi.org/10.1021/je900468u

    Article  Google Scholar 

  14. S.L. Oswal, M.M. Maisuria, R.L. Gardas, J. Mol. Liq. 109, 155 (2004). https://doi.org/10.1016/j.molliq.2003.06.005

    Article  Google Scholar 

  15. Z. Kolská, D. Dvořáková, J. Mika, T. Boublík, Fluid Phase Equilib. 303, 157 (2011). https://doi.org/10.1016/j.fluid.2011.01.018

    Article  Google Scholar 

  16. H. Artigas, M.L. Sanz, A.M. Mainar, F.M. Royo, J.S. Urieta, Phys. Chem. Liq. 30, 17 (1995). https://doi.org/10.1080/00319109508028430

    Article  Google Scholar 

  17. J.R. Goates, J.B. Ott, J.F. Moellmer, J. Chem. Thermodyn. 9, 249 (1997). https://doi.org/10.1016/0021-9614(77)90044-1

    Article  Google Scholar 

  18. K. Bebek, S. Ernst, Arch. Acoust. 15, 239 (1990)

    Google Scholar 

  19. S. Verma, S. Gahlyan, M. Rani, S. Maken, Arab. J. Sci. Eng. 43, 6087 (2018). https://doi.org/10.1007/s13369-018-3276-1

    Article  Google Scholar 

  20. S. Verma, S. Gahlyan, M. Rani, S. Maken, Korean Chem. Eng. Res. 56, 663 (2018)

    Google Scholar 

  21. V. Rodriguez, C. Lafuente, M.C. López, F.M. Royo, J.S. Urieta, J. Chem. Thermodyn. 25, 679 (1993). https://doi.org/10.1006/jcht.1993.1065

    Article  Google Scholar 

  22. J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. De Bièvre, M. Gröning, N.E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk, T. Prohaska, Pure Appl. Chem. 88, 265 (2016). https://doi.org/10.1515/pac-2015-0305

    Article  Google Scholar 

  23. M. Behroozi, H. Zarei, J. Chem. Eng. Data 57, 1089 (2012). https://doi.org/10.1021/je201102x

    Article  Google Scholar 

  24. J.F. Counsell, E.B. Lees, J.F. Martin, J. Chem. Soc. A (1968). https://doi.org/10.1039/j19680001819

    Article  Google Scholar 

  25. A. Villares, S. Martín, M. Haro, B. Giner, H. Artigas, J. Chem. Thermodyn. 36, 1027 (2004). https://doi.org/10.1016/j.jct.2004.07.015

    Article  Google Scholar 

  26. M.G. Bravo-Sánchez, G.A. Iglesias-Silva, A. Estrada-Baltazar, K.R. Hall, J. Chem. Eng. Data 55, 2310 (2010). https://doi.org/10.1021/je900722m

    Article  Google Scholar 

  27. A. Hernández, A.Z. Zeqiraj, F.R. Aliaj, Int. J. Thermophys. 44, 102 (2023). https://doi.org/10.1007/s10765-023-03211-4

    Article  ADS  Google Scholar 

  28. Z.D. Nan, Z.C. Tan, J. Therm. Anal. Calorim. 76, 955 (2004). https://doi.org/10.1023/B:JTAN.0000032281.40952.7e

    Article  Google Scholar 

  29. E. Aicart, G. Tardajos, M. Diaz Peña, J. Chem. Thermodyn. 12, 1085 (1980). https://doi.org/10.1016/0021-9614(80)90165-2

    Article  Google Scholar 

  30. S.A. Beg, N.M. Tukur, D.K. Al-Harbi, E.Z. Hamad, J. Chem. Eng. Data 38, 461 (1993). https://doi.org/10.1021/je00011a035

    Article  Google Scholar 

  31. C.M. Romero, C. Guzman, I. Gascon, P. Cea, M.C. Lopez, Int. J. Thermophys. 27, 760 (2006). https://doi.org/10.1007/s10765-006-0063-0

    Article  ADS  Google Scholar 

  32. A. Diedrichs, J. Gmehling, Fluid Phase Equilib. 244, 68 (2006). https://doi.org/10.1016/j.fluid.2006.03.015

    Article  Google Scholar 

  33. A. Jouyban, J. Soleymani, F. Jafari, M. Khoubnasabjafari, W.E. Acree, J. Chem. Eng. Data 61, 3386 (2016). https://doi.org/10.1021/acs.jced.6b00532

    Article  Google Scholar 

  34. G.C. Benson, O. Kiyohara, J. Chem. Thermodyn. 11, 1061 (1979). https://doi.org/10.1016/0021-9614(79)90136-8

    Article  Google Scholar 

  35. I. Brown, W. Fock, F. Smith, J. Chem. Thermodyn. 1, 273 (1969). https://doi.org/10.1016/0021-9614(69)90047-0

    Article  Google Scholar 

  36. I. Nagata, K. Tamura, J. Chem. Thermodyn. 20, 1101 (1988). https://doi.org/10.1016/0021-9614(88)90117-6

    Article  Google Scholar 

  37. U. Bhardwaj, S. Maken, K.C. Singh, Fluid Phase Equilib. 142, 205 (1998). https://doi.org/10.1016/S0378-3812(97)00227-6

    Article  Google Scholar 

  38. G.S. Fang, K. Tsukamoto, M. Maebayashi, M. Ohba, H. Ogawa, J. Chem. Thermodyn. 78, 204–214 (2014). https://doi.org/10.1016/j.jct.2014.05.020

    Article  Google Scholar 

  39. J. Lohmann, R. Bölts, J. Gmehling, J. Chem. Eng. Data 46, 208 (2001). https://doi.org/10.1021/je000297g

    Article  Google Scholar 

  40. F. Aliaj, A. Gjevori, N. Syla, N. Elezaj, B. Ziberi, B. Dalipi, Acta Phys. Pol. A 137, 465 (2020). https://doi.org/10.12693/APhysPolA.137.465

    Article  ADS  Google Scholar 

  41. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. (McGraw-Hill, New York, 2003)

    Google Scholar 

  42. M.K. Kumaran, G.C. Benson, J. Chem. Thermodyn. 16, 183 (1984). https://doi.org/10.1016/0021-9614(84)90153-8

    Article  Google Scholar 

  43. M. Takenaka, R. Tanaka, S. Murakami, J. Chem. Thermodyn. 12, 849 (1980). https://doi.org/10.1016/0021-9614(80)90029-4

    Article  Google Scholar 

Download references

Funding

No funds were used to support the research of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Arbër Zeqiraj.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1864 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliaj, F., Gjevori, A., Llozana, A. et al. Thermophysical Properties of the 2-Methylpropan-1-ol + Cyclohexane + Benzene Ternary System and Its Binary Subsystems Within the Temperature Range (293.15–333.15) K and Under Ambient Pressure. Int J Thermophys 44, 113 (2023). https://doi.org/10.1007/s10765-023-03222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03222-1

Keywords

Navigation