Skip to main content
Log in

Densities, Sound Speeds, and Refractive Indices of 1-Propanol + Cyclohexane (or Cyclohexene or Cyclohexanone) Binary Mixtures at Various Temperatures Under Atmospheric Pressure: Experimental and Modeling Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental densities ρ and sound speeds u at (293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K and refractive indices nD at 298.15 K are reported for the 1-propanol + cyclohexane, 1-propanol + cyclohexene, and 1-propanol + cyclohexanone binary mixtures covering the entire composition ranges and under atmospheric pressure. The excess molar volumes \({V}_{m}^{E}\), isentropic compressibility deviations \(\Delta {\kappa }_{S}\), and refractive index deviations ΔnD were derived from the experimental data. Redlich–Kister polynomial was the mathematical model of choice to correlate the derived properties of the studied mixtures. In each case, the Redlich–Kister polynomial with an optimal number of parameters provided a statistically significant mathematical representation of the derived properties with standard deviations compared to the estimated expanded uncertainties of corresponding properties. Furthermore, the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) was used to correctly model the density of pure fluids and mixtures, whereas the coupling of PC-SAFT with Schaaff’s collision factor theory (SCFT) and Laplace mixing rules proved to be successful approaches for modeling the speed of sound and refractive index, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N.G. Tsierkezos, I.E. Molinou, A.C. Filippou, J. Solut. Chem. 34, 1371 (2005). https://doi.org/10.1007/s10953-005-8508-9

    Article  Google Scholar 

  2. B. González, N. Calvar, Á. Domínguez, J. Tojo, J. Chem. Thermodyn. 39, 322 (2007). https://doi.org/10.1016/j.jct.2006.06.008

    Article  Google Scholar 

  3. O. Ciocirlan, M. Teodorescu, D. Dragoescu, O. Iulian, A. Barhala, J. Chem. Eng. Data 55, 968 (2010). https://doi.org/10.1021/je900404r

    Article  Google Scholar 

  4. L. Lee, M. Chuang, J. Chem. Eng. Data 42, 850 (1997). https://doi.org/10.1021/je9603335

    Article  Google Scholar 

  5. S.L. Oswal, K.D. Prajapati, J. Chem. Eng. Data 43, 367 (1998). https://doi.org/10.1021/je970235z

    Article  Google Scholar 

  6. R.L. Gardas, S. Oswal, Thermochim. Acta 479, 17 (2008). https://doi.org/10.1016/j.tca.2008.09.006

    Article  Google Scholar 

  7. R. Tanaka, T. Yokoyama, J. Solut. Chem. 33, 1061 (2004). https://doi.org/10.1023/B:JOSL.0000048056.49122.6d

    Article  Google Scholar 

  8. T.M. Letcher, J. Mercer-Chalmers, Can. J. Chem. 69, 1259 (1991). https://doi.org/10.1139/v91-188

    Article  Google Scholar 

  9. M. El-Hefnawy, K. Sameshima, T. Matsushita, R. Tanaka, J. Solut. Chem. 34, 43 (2005). https://doi.org/10.1007/s10953-005-2072-1

    Article  Google Scholar 

  10. M.V.P. Rao, P.R. Naidu, J. Chem. Thermodyn. 8, 96 (1976). https://doi.org/10.1016/0021-9614(76)90157-9

    Article  Google Scholar 

  11. D. NguyenHuynh, T.T. Nguyen, T.T.X. Nguyen, Fluid Phase Equilib. 434, 7 (2017). https://doi.org/10.1016/j.fluid.2016.11.020

    Article  Google Scholar 

  12. M. Kleiner, G. Sadowski, J. Phys. Chem. C 111, 15544 (2007). https://doi.org/10.1021/jp072640v

    Article  Google Scholar 

  13. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001). https://doi.org/10.1021/ie0003887

    Article  Google Scholar 

  14. F. Tumakaka, G. Sadowski, Fluid Phase Equilib. 217, 233 (2004). https://doi.org/10.1016/j.fluid.2002.12.002

    Article  Google Scholar 

  15. D. Belhadj, A. Negadi, A. Hernández, I. Mokbel, I. Bahadur, L. Negadi, J. Chem. Thermodyn. 172, 106820 (2022). https://doi.org/10.1016/j.jct.2022.106820

    Article  Google Scholar 

  16. W. Schaaffs, Acta Acust. United Acust. 33, 272 (1975)

    Google Scholar 

  17. B. Giner, C. Lafuente, A. Villares, M. Haro, M.C. López, J. Chem. Thermodyn. 39, 148 (2007). https://doi.org/10.1016/j.jct.2006.05.003

    Article  Google Scholar 

  18. N.L. Benkelfat-Seladji, F. Ouaar, A. Hernández, N. Muñoz-Rujas, I. Bahadur, N. Chiali-Baba Ahmed, E. Montero, L. Negadi, J. Chem. Eng. Data 66, 3397 (2021). https://doi.org/10.1021/acs.jced.1c00131

    Article  Google Scholar 

  19. N.L. Benkelfat-Seladji, F. Ouaar, A. Hernández, I. Bahadur, N. Muñoz-Rujas, S.K. Singh, E. Montero, N. Chiali-Baba Ahmed, L. Negadi, J. Chem. Thermodyn. 170, 106762 (2022). https://doi.org/10.1016/j.jct.2022.106762

    Article  Google Scholar 

  20. T. Arbneshi, A. Qerimi, A. Zeqiraj, N. Syla, F.R. Aliaj, J. Chem. Eng. Data 67, 2098 (2022). https://doi.org/10.1021/ACS.JCED.2C00093

    Article  Google Scholar 

  21. F. Aliaj, N. Syla, A. Kurtishaj, N. Elezaj, Z. Tolaj, T. Arbneshi, A. Zeqiraj, Int. J. Thermophys. 41, 49 (2020). https://doi.org/10.1007/s10765-020-02632-9

    Article  ADS  Google Scholar 

  22. J. Ortega, J. Chem. Eng. Data 27, 312 (1982). https://doi.org/10.1021/je00029a024

    Article  Google Scholar 

  23. J.L. Hales, J.H. Ellender, J. Chem. Thermodyn. 8, 1177 (1976). https://doi.org/10.1016/0021-9614(76)90126-9

    Article  Google Scholar 

  24. B. Marrufo, S. Loras, M. Sanchotello, J. Chem. Eng. Data 55, 5812 (2010). https://doi.org/10.1021/je100776x

    Article  Google Scholar 

  25. G. Tardajos, M. Diaz Pena, A. Lainez, E. Aicart, J. Chem. Eng. Data 31, 492 (1986). https://doi.org/10.1021/je00046a031

    Article  Google Scholar 

  26. I. Domínguez, N. Calvar, E. Gómez, Á. Domínguez, J. Chem. Thermodyn. 43, 705 (2011). https://doi.org/10.1016/j.jct.2010.12.012

    Article  Google Scholar 

  27. T.M. Letcher, J. Chem. Thermodyn. 9, 661 (1977). https://doi.org/10.1016/0021-9614(77)90091-X

    Article  Google Scholar 

  28. C. Bermúdez-Salguero, J. Gracia-Fadrique, E. Calvo, A. Amigo, J. Chem. Eng. Data 56, 3823 (2011). https://doi.org/10.1021/je200468r

    Article  Google Scholar 

  29. K. Tamura, A. Osaki, Thermochim. Acta 352–353, 11 (2000). https://doi.org/10.1016/S0040-6031(99)00430-X

    Article  Google Scholar 

  30. J.N. Nayak, M.I. Aralaguppi, T.M. Aminabhavi, J. Chem. Eng. Data 48, 628 (2003). https://doi.org/10.1021/je0201828

    Article  Google Scholar 

  31. A. Zeqiraj, A. Gjevori, A. Llozana, N. Syla, F. Aliaj, Int. J. Thermodyn. 26, 48 (2022). https://doi.org/10.5541/ijot.1173589

    Article  Google Scholar 

  32. P.R. Garrett, J.M. Pollock, K.W. Morcom, J. Chem. Thermodyn. 5, 569 (1973). https://doi.org/10.1016/S0021-9614(73)80105-3

    Article  Google Scholar 

  33. F. Aliaj, A. Zeqiraj, Phys. Chem. Liq. (2023). https://doi.org/10.1080/00319104.2023.2188213

    Article  Google Scholar 

  34. F. Aliaj, A. Bytyqi-Damoni, N. Syla, AKTET J. Inst. Alb-Shkenca 9, 36 (2016)

    Google Scholar 

  35. P. Brocos, Á. Piñeiro, R. Bravo, A. Amigo, Phys. Chem. Chem. Phys. 5, 550 (2003). https://doi.org/10.1039/b208765k

    Article  Google Scholar 

  36. O. Redlich, A.T. Kister, Ind. Eng. Chem. 40, 345 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  37. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. (McGraw-Hill, New York, 2003)

    Google Scholar 

  38. T.E. Daubert, R.P. Danner, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation (Taylor and Francis, Bristol, 2004)

    Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

AH performed modeling of physical properties, wrote Sect. 2, and prepared Figs. 4, 5, 6, and S3–S6; AZZ measured properties of the studied mixtures and prepared manuscript tables; FRA assisted in measurements, wrote the main manuscript text, and prepared Figs. 1, 2, 3, and S1–S2. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fisnik Rrustem Aliaj.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 550 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, A., Zeqiraj, A.Z. & Aliaj, F.R. Densities, Sound Speeds, and Refractive Indices of 1-Propanol + Cyclohexane (or Cyclohexene or Cyclohexanone) Binary Mixtures at Various Temperatures Under Atmospheric Pressure: Experimental and Modeling Study. Int J Thermophys 44, 102 (2023). https://doi.org/10.1007/s10765-023-03211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03211-4

Keywords

Navigation