Skip to main content
Log in

The potential of TEMPO-oxidized cellulose nanofibrils as rheology modifiers in food systems

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanofibrils (CNFs) have been proposed for use in low-fat food products due to their availability and excellent viscosifying and gel forming abilities. As the CNFs are negatively charged, the presence of other components in foods, such as electrolytes and food additives such as xanthan gum is likely to affect their rheological properties. Hence, the study of these interactions can contribute valuable information of the suitability of CNFs as rheology modifiers and fat replacers. Rheological measurements on aqueous dispersions of TEMPO-oxidized CNFs were performed with variations in concentration of CNFs, concentration of electrolytes and with varying CNF/xanthan ratios. UV–Vis Spectroscopy was used to evaluate the onset of CNF flocculation/aggregation in the presence of electrolytes. The CNF dispersions followed a power-law dependency for viscosity and moduli on CNF concentration. Low electrolyte additions strengthened the CNF network by allowing for stronger interactions, while higher additions led to fibril aggregation, and loss of viscosity, especially under shear. The CNF/xanthan ratio, as well as the presence of electrolytes were shown to be key factors in determining whether the viscosity and storage modulus of CNF dispersions increased or decreased when xanthan was added.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aarstad O, Heggset EB, Pedersen IS, Bjørnøy SH, Syverud K, Strand BL (2017) Mechanical properties of composite hydrogels of alginate and cellulose nanofibrils. Polymers 9:378

    Article  CAS  PubMed Central  Google Scholar 

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier J-L (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

    Article  CAS  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-newton Fluid Mech 56:221–251. https://doi.org/10.1016/0377-0257(94)01282-M

    Article  CAS  Google Scholar 

  • Buscall R, McGowan JI, Morton-Jones AJ (1993) The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J Rheol 37:621–641

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y (2011) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461. https://doi.org/10.1016/j.carbpol.2011.04.061

    Article  CAS  Google Scholar 

  • Cheung I, Gomes F, Ramsden R, Roberts D (2002) Evaluation of fat replacers Avicel™, N Lite S™ and Simplesse™ in mayonnaise. Int J Consumer Stud 26:27–33

    Article  Google Scholar 

  • Cousins SK, Brown RM (1997) X-ray diffraction and ultrastructural analyses of dye-altered celluloses support van der Waals forces as the initial step in cellulose crystallization. Polymer 38:897–902

    Article  CAS  Google Scholar 

  • Derjaguin B, Landau L (1941) The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions. Acta Physicochim URSS 14:58

    Google Scholar 

  • Dong H, Snyder JF, Williams KS, Andzelm JW (2013) Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. Biomacromolecules 14:3338–3345

    Article  CAS  PubMed  Google Scholar 

  • Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338

    Article  CAS  PubMed  Google Scholar 

  • Food Standards Agency (2010) Eat well-your guide to healthy eating. Accessed 1 Nov 2017

  • Fukuzumi H, Tanaka R, Saito T, Isogai A (2014) Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose 21:1553–1559. https://doi.org/10.1007/s10570-014-0180-z

    Article  CAS  Google Scholar 

  • Gardner K, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  • González-Tomás L, Bayarri S, Taylor A, Costell E (2007) Flavour release and perception from model dairy custards. Food Res Int 40:520–528

    Article  CAS  Google Scholar 

  • Hardy WB (1900) A preliminary investigation of the conditions which determine the stability of irreversible hydrosols. J PhysChem 4:235–253

    CAS  Google Scholar 

  • Heggset EB, Chinga-Carrasco G, Syverud K (2017) Temperature stability of nanocellulose dispersions. Carbohydr Polym 157:114–121

    Article  CAS  PubMed  Google Scholar 

  • Heggset EB, Strand BL, Sundby KW, Simon S, Chinga-Carrasco G, Syverud K (2019) Viscoelastic properties of nanocellulose based inks for 3D printing and mechanical properties of CNF/alginate biocomposite gels. Cellulose 26:581–595

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Heyn AN (1969) The elementary fibril and supermolecular structure of cellulose in soft wood fiber. J Ultrastruct Res 26:52–68

    Article  CAS  PubMed  Google Scholar 

  • Iotti M, Gregersen ØW, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145

    Article  CAS  Google Scholar 

  • Isomaa B et al (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–689

    Article  CAS  PubMed  Google Scholar 

  • James PT, Rigby N, Leach R (2004) The obesity epidemic, metabolic syndrome and future prevention strategies. Eur J Cardiovasc Prev Rehabil 11:3–8

    Article  PubMed  Google Scholar 

  • Jellema RH, Janssen AM, Terpstra ME, de Wijk RA, Smilde AK (2005) Relating the sensory sensation ‘creamy mouthfeel’ in custards to rheological measurements. J Chemom 19:191–200

    Article  CAS  Google Scholar 

  • Jowkarderis L, van de Ven TGM (2015) Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils. Carbohydr Polym 123:416–423

    Article  CAS  PubMed  Google Scholar 

  • Kerekes R, Soszynski R, Tam Doo P (1985) The flocculation of pulp fibres. Papermak Raw Mater 1:265

    Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433. https://doi.org/10.1007/s10570-007-9184-2

    Article  CAS  Google Scholar 

  • Lowys M-P, Desbrieres J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives. Food Hydrocoll 15:25–32

    Article  CAS  Google Scholar 

  • Lucca PA, Tepper BJ (1994) Fat replacers and the functionality of fat in foods. Trends Food Sci Technol 5:12–19

    Article  CAS  Google Scholar 

  • Mudgil D, Barak S (2013) Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol 61:1–6

    Article  CAS  PubMed  Google Scholar 

  • Myllytie P, Holappa S, Paltakari J, Laine J (2009) Effect of polymers on aggregation of cellulose fibrils and its implication on strength development in wet paper web. Nord Pulp Pap Res J 24:125–134

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T (2014) Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties. Cellulose 21:3507–3514. https://doi.org/10.1007/s10570-014-0394-0

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Pettersson T (2014a) The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21:2357–2368. https://doi.org/10.1007/s10570-014-0329-9

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J (2014b) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439. https://doi.org/10.1016/j.carbpol.2014.05.092

    Article  CAS  PubMed  Google Scholar 

  • Orelma H, Teerinen T, Johansson L-S, Holappa S, Laine J (2012) CMC-modified cellulose biointerface for antibody conjugation. Biomacromolecules 13:1051–1058. https://doi.org/10.1021/bm201771m

    Article  CAS  PubMed  Google Scholar 

  • Pääkkö M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  CAS  PubMed  Google Scholar 

  • Payen A (1838) Sur un Moyen d’isoler le Tissu Élémentaire des Bois. C R Hebd des Seances de l’Acad des Sci 7:1125

    Google Scholar 

  • Purves C (1954) Chain structure in cellulose and cellulose derivatives: part 1. Wiley, New York

    Google Scholar 

  • Roller S, Jones SA (1996) Handbook of fat replacers. CRC Press, Boca Raton

    Book  Google Scholar 

  • Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19:647–659

    Article  CAS  Google Scholar 

  • Saarikoski E, Rissanen M, Seppälä J (2015) Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming. Carbohydr Polym 119:62–70

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989. https://doi.org/10.1021/bm0497769

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf Physicochem Eng Asp 289:219–225. https://doi.org/10.1016/j.colsurfa.2006.04.038

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Castilla O, Lobato-Calleros C, Aguirre-Mandujano E, Vernon-Carter E (2004) Microstructure and texture of yogurt as influenced by fat replacers. Int Dairy J 14:151–159

    Article  CAS  Google Scholar 

  • Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze H (1882) Schwefelarsen in wässriger Lösung. J für praktische Chemie 25:431–452

    Article  Google Scholar 

  • Sorvari A, Saarinen T, Haavisto S, Salmela J, Vuoriluoto M, Seppälä J (2014) Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption. Carbohydr Polym 106:283–292. https://doi.org/10.1016/j.carbpol.2014.02.032

    Article  CAS  PubMed  Google Scholar 

  • Stendahl JC, Rao MS, Guler MO, Stupp SI (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv Funct Mater 16:499–508

    Article  CAS  Google Scholar 

  • Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. 日本レオロジー学会誌 30:27–32

    CAS  Google Scholar 

  • Torres IC, Janhøj T, Mikkelsen BØ, Ipsen R (2011) Effect of microparticulated whey protein with varying content of denatured protein on the rheological and sensory characteristics of low-fat yoghurt. Int Dairy J 21:645–655

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983). Microfibrillated cellulose. Google Patents

  • U.S. Department of Health and Human Services and U.S. Department of Agriculture (2015) 2015–2020 dietary guidelines for Americans, 8th edn. http://health.gov/dietaryguidelines/2015/guidelines/. Accessed 8 Dec 2016

  • USDA (2018) USDA food composition databases, vol 2018. USDA. https://ndb.nal.usda.gov/ndb/search/list?home=true. Accessed 18 Oct 2018

  • Van Gaal LF, Mertens IL, Christophe E (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  CAS  PubMed  Google Scholar 

  • Verwey J, Overbeek T (1948) Theory of the stability of lyophobic colloids. Advances in colloid interface science. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

This work has been partly funded by the Research Council of Norway through the NANO2021 Project NanoVisc, (Grant No. 245300), initiated and led by RISE PFI, and partly funded by the companies Borregaard, Stora Enso,Mercer and the foundation Papirindustriens Forskningsinstitutt. The authors would like to thank Per Olav Johnsen and Birgitte Hjelmeland McDonagh (RISE PFI) for their excellent laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Syverud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aaen, R., Simon, S., Wernersson Brodin, F. et al. The potential of TEMPO-oxidized cellulose nanofibrils as rheology modifiers in food systems. Cellulose 26, 5483–5496 (2019). https://doi.org/10.1007/s10570-019-02448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02448-3

Keywords

Navigation