Skip to main content
Log in

Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The rheology of cellulose microfibril suspensions from TEMPO-oxidized pulp was investigated. The suspension showed a pseudo-plastic and thixotropic behavior, slowly evolving with time under a given shear rate. The viscosity was proportional to the concentration up to the critical concentration of 0.23%. Above it, the viscosity followed a power law with exponents from 2 to 6 depending on the shear rate, and the system showed shear thinning behavior and behaved gel-like. Below this concentration, the system was more Newtonian. Birefringence measurement of 0.44% and 0.78% suspension showed that microfibrils alignment saturated at a small shear rate with a Herman’s orientation parameter below 0.65 probably due to the interconnection of microfibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Azuma J, Sakamoto M (2003) Cellulosic hydrocolloid system present in seed of plants. Trends Glycosci Glycotechnol 15:1–14

    CAS  Google Scholar 

  • Barnes HA (1997) Thixotropy––a review. J Non-Newtonian Fluid Mech 70:1–33

    Article  CAS  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13:275–283

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics, Chapter 7. Oxford University Press, New York, pp 218–288

    Google Scholar 

  • Fuller GD (1995) Optical rheometry of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose; Morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Hioki N, Hori Y, Watanabe K, Morinaga Y, Yoshinaga F, Hibino Y, Ogura T (1995) Bacterial cellulose; as a new material for papermaking. Jpn Tappi J 49:82–87

    Google Scholar 

  • Krishna Iyer K, Neelakantan P, Radhakrishnan T (1968) Birefringence of native cellulosic fibers. I. Untreated cotton and ramie. J Polym Sc A-2 6:1747–1758

    Article  Google Scholar 

  • Lepoutre P, Robertson AA (1974) Colloidal solutions from sodium polyacrylate-polyacrylamide grafted cellulose. TAPPI 57:87–90

    CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Joan Koch M (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon MR, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product; properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Vian B, Reis D, Darzens D, Roland JC (1994) Cholesteric-like crystal analogs in glucuronoxylan-rich cell wall composites: experimental approach of acellular re-assembly from native cellulosic suspension. Protoplasma 180:70–81

    Article  CAS  Google Scholar 

  • Wiener O (1912) Die Theorie des mischkörpers für das Feld der stationären Strömung. Abh Math-Phys Klasse königlich sächischen Ges Wiss 32:509–604

    Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Materials 17:153–155

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mat 6(9):754–761

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Nishiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasseuguette, E., Roux, D. & Nishiyama, Y. Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15, 425–433 (2008). https://doi.org/10.1007/s10570-007-9184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9184-2

Keywords

Navigation