Skip to main content

Advertisement

Log in

Structure and Catalytic Properties of Ceria-based Nickel Catalysts for CO2 Reforming of Methane

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Carbon dioxide reforming (CDR) of methane to synthesis gas over supported nickel catalysts has been reviewed. The present review mainly focuses on the advantage of ceria based nickel catalysts for the CDR of methane. Nickel catalysts supported on ceria–zirconia showed the highest activity for CDR than nickel supported on other oxides such as zirconia, ceria and alumina. The addition of zirconia to ceria enhances the catalytic activity as well as the catalyst stability. The catalytic performance also depends on the crystal structure of Ni–Ce–ZrO2. For example, nickel catalysts co-precipitated with Ce0.8Zr0.2O2 having cubic phase gave synthesis gas with CH4 conversion more than 97% at 800 °C and the activity was maintained for 100 h during the reaction. On the contrary, Ni–Ce–ZrO2 having tetragonal phase (Ce0.8Zr0.2O2) or mixed oxide phase (Ce0.5Zr0.5O2) deactivated during the reaction due to carbon formation. The enhanced catalytic performance of co-precipitated catalyst is attributed to a combination effect of nano-crystalline nature of cubic Ce0.8Zr0.2O2 support and the finely dispersed nano size NiO x crystallites, resulting in the intimate contact between Ni and Ce0.8Zr0.2O2 particles. The Ni/Ce–ZrO2/θ–Al2O3 also exhibited high catalytic activity during CDR with a synthesis gas conversion more than 97% at 800 °C without significant deactivation for more than 40 h. The high stability of the catalyst is mainly ascribed to the beneficial pre-coating of Ce–ZrO2 resulting in the existence of stable NiO x species, a strong interaction between Ni and the support, and an abundance of mobile oxygen species in itself. TPR results further confirmed that NiO x formation was more favorable than NiO or NiAl2O4 formation and further results suggested the existence of strong metal-support interaction (SMSI) between Ni and the support. Some of the important factors to optimize the CDR of methane such as reaction temperature, space velocity, feed CO2/CH4 ratio and H2O and/or O2 addition were also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hu YH, Ruckenstein E (2004) Adv Catal 48:297

    Article  CAS  Google Scholar 

  2. Bradford MCJ, Vannice MA (1999) Catal Rev-Sci Eng 41:1

    Article  CAS  Google Scholar 

  3. Rostrup-Nielsen JR (1993) Stud Surf Sci Catal 81:25

    Google Scholar 

  4. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Nature 352:225

    Article  CAS  Google Scholar 

  5. Zhang Z, Verykios XE, MacDonald SM, Affrossman S (1996) J Phys Chem 100:744

    Article  CAS  Google Scholar 

  6. Ruckenstein E, Hu YH (1998) Appl Catal A: Gen 51:183

    CAS  Google Scholar 

  7. Chang J-S, Park S-E, Chon H (1996) Appl Catal A: Gen 145:111

    Article  CAS  Google Scholar 

  8. Nakamura J, Aikawa K, Sato K, Uchijima T (1994) Catal Lett 25:265

    Article  CAS  Google Scholar 

  9. Chang J-S, Park S-E, Yoo JW, Park JN (2000) J Catal 195:1

    Article  CAS  Google Scholar 

  10. Luo JZ, Yu ZL, Ng CF, Au CT (2000) J Catal 194:198

    Article  CAS  Google Scholar 

  11. Chen YG, Tomishige K, Yokoyama K, Fujimoto K (1999) J Catal 184:479

    Article  CAS  Google Scholar 

  12. Rostrup-Nielsen JR, Hansen JHB (1993) J Catal 144:38

    Article  CAS  Google Scholar 

  13. Lima S, Assaf JM, Pena MA, Fierro JLG (2006) Appl Catal A: Gen 311:94

    Article  CAS  Google Scholar 

  14. Nandini A, Pant KK, Dhingra SC (2006) Appl Catal A: Gen 308:119

    Article  CAS  Google Scholar 

  15. Choudary VR, Mondal KC, Choudary TV (2006) Appl Catal A: Gen 306:45

    Article  CAS  Google Scholar 

  16. Perez-Lopez OW, Senger A, Marcilio NR, Lansarin MA (2006) Appl Catal A: Gen 303:234

    Article  CAS  Google Scholar 

  17. Martinez R, Romero E, Guimon C, Bilbao R (2004) Appl Catal A: Gen 274:139

    Article  CAS  Google Scholar 

  18. Potdar HS, Roh H-S, Jun K-W, Ji M, Liu Z-W (2002) Catal Lett 84:95

    Article  CAS  Google Scholar 

  19. Roh H-S, Jun K-W, Back S-C, Park S-E (2002) Catal Lett 81:147

    Article  CAS  Google Scholar 

  20. Roh H-S, Potdar HS, Jun K-W, Kim J-W, Oh YS (2004) Appl Catal A: Gen 276:231

    Article  CAS  Google Scholar 

  21. Roh H-S, Potdar HS, Jun K-W (2004) Catal Today 93–95:39

    Article  CAS  Google Scholar 

  22. Roh H-S, Jun K-W, Park SE (2003) J Ind Eng Chem 9:261

    CAS  Google Scholar 

  23. Liu ZW, Roh H-S, Jun K-W (2003) J Ind Eng Chem 9:267

    Google Scholar 

  24. Roh H-S, Jun K-W, Dong W-S, Baek S-C, Park S-E (2002) J Ind Eng Chem 8:464

    CAS  Google Scholar 

  25. Liu Z-W, Roh H-S, Jun K-W, Potdar HS, Ji M (2003) J Ind Eng Chem 9:576

    CAS  Google Scholar 

  26. Nagaoka K, Sheshan K, Aika K, Lercher JA (2001) J Catal 197:34

    Article  CAS  Google Scholar 

  27. Verykios XE (2003) Appl Catal A: Gen 255:101

    Article  CAS  Google Scholar 

  28. Wang H, Ruckenstein E (2000) Appl Catal A; Gen 204:143

    Article  CAS  Google Scholar 

  29. Tanabe K, Nagaoka K, Nariai K, Aika K (2005) J Catal 232:268

    Article  CAS  Google Scholar 

  30. Wang H, Ruckenstein E (2002) J Catal 205:289

    Article  CAS  Google Scholar 

  31. Rynkowski J, Samulkiewicz P, Ladavos AK, Pomonis PJ (2004) Appl Catal A; Gen 263:1

    Article  CAS  Google Scholar 

  32. Daujati ARS, LaMont DC, Thomson WJ (2003) Appl Catal A; Gen 253:397

    Article  CAS  Google Scholar 

  33. Dissanayake D, Rosynek MP, Kharas KCC, Lunsford JH (1991) J Catal 132:117

    Article  CAS  Google Scholar 

  34. Jung K-S, Coh B-Y, Lee H-I (1999) Bull Korean Chem Soc 20:89

    CAS  Google Scholar 

  35. Roh H-S, Jun K-W, Dong W-S, Park S-E, Joe Y-I (2001) Chem. Lett. 666

  36. Tomishige K, Fujimoto K (1998) Catalysis Surveys from Japan 2:3

    Article  CAS  Google Scholar 

  37. Takehira K (2002) Catalysis Surveys from Japan 6:19

    Article  CAS  Google Scholar 

  38. Lercher JA, Bitter JH, Hally W, Niessen W, Seshan K (1996) Stud Surf Sci Catal 101:463

    CAS  Google Scholar 

  39. Roh H-S, Jun K-W, Dong W-S, Park S-E, Baek Y-S (2001) Catal Lett 74:31

    Article  CAS  Google Scholar 

  40. Roh H-S, Jun K-W, Dong W-S, Chang J-S, Park S-E, Joe Y-I (2002) J Mol Catal A 181:137

    Article  CAS  Google Scholar 

  41. Roh H-S, Dong W-S, Jun K-W, Park S-E (2001) Chem. Lett. 88

  42. Dong W-S, Roh H-S, Jun K-W, Park S-E, Oh Y-S (2002) Appl Catal A; Gen 226:63

    Article  CAS  Google Scholar 

  43. Montoya JA, Romero-Pascual E, Gimon C, Del Angel P, Monzon A (2000) Catal Today 63:71

    Article  CAS  Google Scholar 

  44. Trovarelli A (1996) Catal Rev Sci Eng 38:439

    Article  CAS  Google Scholar 

  45. Roh H-S, Potdar HS, Jun K-W, Han SY, Kim J-W (2004) Catal Lett 93:203

    Article  CAS  Google Scholar 

  46. Oh YS, Roh H-S, Jun K-W, Baek YS (2003) Int J Hydrogen Energy 28:1387

    Article  CAS  Google Scholar 

  47. Roh H-S, Jun K-W, Baek S-C, Park S-E (2002) Bull Korean Chem Soc 23:793

    Article  CAS  Google Scholar 

  48. Luo M-F, Lu G-L, Zheng X-M, Zhong Y-J, Wu T-H (1998) J Mater Sci 17:1553

    CAS  Google Scholar 

  49. Dasturi M, Finocchio E, Binet C, Lavalley J-C, Fally F, Perrichon V, Vidal H, Hickey N, Kaspar J (2000) J Phys Chem B 104:9186

    Article  CAS  Google Scholar 

  50. Lemonidou AA, Goula MA, Vasalos IA (1998) Catal Today 46:175

    Article  CAS  Google Scholar 

  51. Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE (2000) J Catal 194:240

    Article  CAS  Google Scholar 

  52. Cabanas A, Darr JA, Lester E, Poliakoff M (2001) J Mater Chem 11:561

    Article  CAS  Google Scholar 

  53. Potdar HS, Deshpande SB, Deshpande AS, Gokhale SP, Khollam YB, Patil AJ, Date SK (2001) Mater Chem Phys 74:306

    Article  Google Scholar 

  54. Hegarty MES, O’Connor AM, Ross JRH (1998) Catal Today 42:225

    Article  CAS  Google Scholar 

  55. Colon G, Pijolat M, Valdivieso F, Vidal H, Kaspar J, Fiocchio E, Daturi M, Binet C, Lavalley JC, Bakar PT, Bernal S (1998) J Chem Soc Faraday Trans 94:3717

    Article  CAS  Google Scholar 

  56. Balducci G, Islam MS, Kaspar J, Fornasiero P, Grazini M (2000) Chem Mater 12:677

    Article  CAS  Google Scholar 

  57. ASTM Card No: 4–0835

  58. Fornasiero P, Monte RD, Rao RG, Kaspar J, Meriani S, Trovarelli A, Graziani M (1995) J Catal 151:168

    Article  CAS  Google Scholar 

  59. Jung K-S, Coh B-Y, Lee H-I (1999) Bull Korean Chem Soc 20:89

    CAS  Google Scholar 

  60. Macek J, Marinsek M (1999) Nanostruct Mater 12:499

    Article  Google Scholar 

  61. Trovarelli A, de Leitenburg C, Dolcetti G (1997) Chemtech 27:32

    CAS  Google Scholar 

  62. Rossignol S, Gerard F, Duprez D (1999) J Mater Chem 9:1615

    Article  CAS  Google Scholar 

  63. Hori CE, Permana H, Simon KY, Brenner A, More K, Rannnoeller KM, Belton D (1998) Appl Catal B 16:105

    Article  CAS  Google Scholar 

  64. Chuan GK, Jaenicke S (1997) Appl Catal A 163:261

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the Korea Ministry of Commerce, Industry and Energy through “Energy Resources Technology Development Project” of KEMCO. KVR thanks Korea Federation of Science & Technology (KOFST) for the award of the visiting research fellowship under Brain Pool Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Won Jun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, KW., Roh, HS. & Chary, K.V.R. Structure and Catalytic Properties of Ceria-based Nickel Catalysts for CO2 Reforming of Methane. Catal Surv Asia 11, 97–113 (2007). https://doi.org/10.1007/s10563-007-9026-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-007-9026-0

Keywords

Navigation