Skip to main content
Log in

Metabolism Serves as a Bridge Between Cardiomyocytes and Immune Cells in Cardiovascular Diseases

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Metabolic disorders of cardiomyocytes play an important role in the progression of various cardiovascular diseases. Metabolic reprogramming can provide ATP to cardiomyocytes and protect them during diseases, but this transformation also leads to adverse consequences such as oxidative stress, mitochondrial dysfunction, and eventually aggravates myocardial injury. Moreover, abnormal accumulation of metabolites induced by metabolic reprogramming of cardiomyocytes alters the cardiac microenvironment and affects the metabolism of immune cells. Immunometabolism, as a research hotspot, is involved in regulating the phenotype and function of immune cells. After myocardial injury, both cardiac resident immune cells and heart-infiltrating immune cells significantly contribute to the inflammation, repair and remodeling of the heart. In addition, metabolites generated by the metabolic reprogramming of immune cells can further affect the microenvironment, thereby affecting the function of cardiomyocytes and other immune cells. Therefore, metabolic reprogramming and abnormal metabolite levels may serve as a bridge between cardiomyocytes and immune cells, leading to the development of cardiovascular diseases. Herein, we summarize the metabolic relationship between cardiomyocytes and immune cells in cardiovascular diseases, and the effect on cardiac injury, which could be therapeutic strategy for cardiovascular diseases, especially in drug research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  1. Lu M, Jia M, Wang Q, et al. The electrogenic sodium bicarbonate cotransporter and its roles in the myocardial ischemia-reperfusion induced cardiac diseases. Life Sci. 2021;270:119153. https://doi.org/10.1016/j.lfs.2021.119153

    Article  CAS  PubMed  Google Scholar 

  2. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac Energy Metabolism in Heart Failure. Circ Res. 2021;128(10):1487–513. https://doi.org/10.1161/circresaha.121.318241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci. 2022;23(2):996. https://doi.org/10.3390/ijms23020996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vajdovich P. Free radicals and antioxidants in inflammatory processes and ischemia-reperfusion injury. Vet Clin North Am Small Animal Pract. 2008;38(1):31–123, v. https://doi.org/10.1016/j.cvsm.2007.11.008.

    Article  Google Scholar 

  5. Milliken A, Ciesla J, Nadtochiy S, Brookes P. Distinct effects of intracellular vs. extracellular acidic pH on the cardiac metabolome during ischemia and reperfusion. J Mol Cell Cardiol. 2023;174:101–14. https://doi.org/10.1016/j.yjmcc.2022.11.008.

    Article  CAS  PubMed  Google Scholar 

  6. Manosalva C, Quiroga J, Hidalgo A, et al. Role of Lactate in Inflammatory Processes: Friend or Foe. Front Immunol. 2021;12:808799. https://doi.org/10.3389/fimmu.2021.808799.

    Article  CAS  PubMed  Google Scholar 

  7. Marelli-Berg F, Aksentijevic D. Immunometabolic cross-talk in the inflamed heart. Cell Stress. 2019;3(8):240–66. https://doi.org/10.15698/cst2019.08.194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen R, Zhang S, Liu F, et al. viaRenewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation Jagged-1-Notch1. Acta Pharm Sinica B. 2023;13(1):128–41. https://doi.org/10.1016/j.apsb.2022.08.016.

    Article  CAS  Google Scholar 

  9. Graham N, Huang G. Endocrine Influence on Cardiac Metabolism in Development and Regeneration. Endocrinology. 2021;162(9):bqab081. https://doi.org/10.1210/endocr/bqab081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res. 2021;117(3):712–26. https://doi.org/10.1093/cvr/cvaa159.

    Article  CAS  PubMed  Google Scholar 

  11. Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17(6):341–59. https://doi.org/10.1038/s41569-019-0331-x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dimasi C, Darby J, Morrison J. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol. 2023;601(8):1319–41. https://doi.org/10.1113/jp284137.

    Article  CAS  PubMed  Google Scholar 

  13. Taegtmeyer H, Young M, Lopaschuk G, et al. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res. 2016;118(10):1659–701. https://doi.org/10.1161/res.0000000000000097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jankauskas S, Kansakar U, Varzideh F, et al. Heart failure in diabetes. Metab: Clin Exp. 2021;125:154910. https://doi.org/10.1016/j.metabol.2021.154910.

    Article  CAS  PubMed  Google Scholar 

  15. Ussher J, Folmes C, Keung W, et al. Inhibition of serine palmitoyl transferase I reduces cardiac ceramide levels and increases glycolysis rates following diet-induced insulin resistance. PloS one. 2012;7(5):e37703. https://doi.org/10.1371/journal.pone.0037703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tran D, Wang Z. Glucose Metabolism in Cardiac Hypertrophy and Heart Failure. J Am Heart Assoc. 2019;8(12):e012673. https://doi.org/10.1161/jaha.119.012673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karwi Q, Biswas D, Pulinilkunnil T, Lopaschuk G. Myocardial Ketones Metabolism in Heart Failure. J Cardiac Failure. 2020;26(11):998–1005. https://doi.org/10.1016/j.cardfail.2020.04.005.

    Article  PubMed  Google Scholar 

  18. Sun H, Olson K, Gao C, et al. Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation. 2016;133(21):2038–49. https://doi.org/10.1161/circulationaha.115.020226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stanley W, Recchia F, Lopaschuk G. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129. https://doi.org/10.1152/physrev.00006.2004.

    Article  CAS  PubMed  Google Scholar 

  20. Murashige D, Jang C, Neinast M, et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science (New York, NY). 2020;370(6514):364–8. https://doi.org/10.1126/science.abc8861.

    Article  CAS  Google Scholar 

  21. Wu T, Wang M, Ning F, et al. Emerging role for branched-chain amino acids metabolism in fibrosis. Pharmacol Res. 2023;187:106604. https://doi.org/10.1016/j.phrs.2022.106604.

    Article  CAS  PubMed  Google Scholar 

  22. Uddin G, Zhang L, Shah S, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18(1):86. https://doi.org/10.1186/s12933-019-0892-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tanada Y, Shioi T, Kato T, et al. Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci. 2015;137:20–7. https://doi.org/10.1016/j.lfs.2015.06.021.

    Article  CAS  PubMed  Google Scholar 

  24. Duan X, Liu X, Zhan Z. Metabolic Regulation of Cardiac Regeneration. Front Cardiovasc Med. 2022;9:933060. https://doi.org/10.3389/fcvm.2022.933060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fillmore N, Mori J, Lopaschuk G. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. British J Pharmacol. 2014;171(8):2080–90. https://doi.org/10.1111/bph.12475.

    Article  CAS  Google Scholar 

  26. Corcoran S, O’Neill L. HIF1α and metabolic reprogramming in inflammation. J Clin Investig. 2016;126(10):3699–707. https://doi.org/10.1172/jci84431.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Zheng Y, Qi B, et al. α-Lipoic acid alleviates myocardial injury and induces M2b macrophage polarization after myocardial infarction via HMGB1/NF-kB signaling pathway. Int Immunopharmacol. 2023;121:110435. https://doi.org/10.1016/j.intimp.2023.110435.

    Article  CAS  PubMed  Google Scholar 

  28. Chistiakov D, Shkurat T, Melnichenko A, Grechko A, Orekhov A. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018;50(2):121–7. https://doi.org/10.1080/07853890.2017.1417631.

    Article  CAS  PubMed  Google Scholar 

  29. Olejnik A, Banaszkiewicz M, Krzywonos-Zawadzka A, Bil-Lula I. The Klotho protein supports redox balance and metabolic functions of cardiomyocytes during ischemia/reperfusion injury. Cardiol J. 2022;29(5):836–49. https://doi.org/10.5603/CJ.a2021.0174.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chouchani E, Pell V, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–5. https://doi.org/10.1038/nature13909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baardman J, Verberk SGS, Prange KHM, et al. A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia. Cell Rep. 2018;25(8):2044-52.e5. https://doi.org/10.1016/j.celrep.2018.10.092.

    Article  CAS  PubMed  Google Scholar 

  32. Ye L, Jiang Y, Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev. 2022;68:81–92. https://doi.org/10.1016/j.cytogfr.2022.11.001.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Bories G, Lantz C, et al. Immunometabolism of Phagocytes and Relationships to Cardiac Repair. Front Cardiovasc Med. 2019;6:42. https://doi.org/10.3389/fcvm.2019.00042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The Metabolic Signature of Macrophage Responses. Front Immunol. 2019;10:1462. https://doi.org/10.3389/fimmu.2019.01462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang F, Wang K, Xu W, et al. SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production and to Prevent DSS-Induced Colitis in Mice. Cell Rep. 2017;19(11):2331–44. https://doi.org/10.1016/j.celrep.2017.05.065.

    Article  CAS  PubMed  Google Scholar 

  36. Prag H, Gruszczyk A, Huang M, et al. Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc Res. 2021;117(4):1188–201. https://doi.org/10.1093/cvr/cvaa148.

    Article  CAS  PubMed  Google Scholar 

  37. Rubic T, Lametschwandtner G, Jost S, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008;9(11):1261–9. https://doi.org/10.1038/ni.1657.

    Article  CAS  PubMed  Google Scholar 

  38. He L, Weber K, Schilling J. Glutamine Modulates Macrophage Lipotoxicity. Nutrients. 2016;8(4):215. https://doi.org/10.3390/nu8040215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun P, Wang N, Zhao P, et al. Circulating Exosomes Control CD4 T Cell Immunometabolic Functions via the Transfer of miR-142 as a Novel Mediator in Myocarditis. Mol Ther: J Am Soc Gene Ther. 2020;28(12):2605–20. https://doi.org/10.1016/j.ymthe.2020.08.015.

    Article  CAS  Google Scholar 

  40. Haas R, Smith J, Rocher-Ros V, et al. Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biol. 2015;13(7):e1002202. https://doi.org/10.1371/journal.pbio.1002202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pucino V, Bombardieri M, Pitzalis C, Mauro C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur J Immunol. 2017;47(1):14–21. https://doi.org/10.1002/eji.201646477.

    Article  CAS  PubMed  Google Scholar 

  42. Zhong S, Li L, Shen X, et al. An update on lipid oxidation and inflammation in cardiovascular diseases. Free radbiol Med. 2019;144:266–78. https://doi.org/10.1016/j.freeradbiomed.2019.03.036.

    Article  CAS  Google Scholar 

  43. Mishra P, Ying W, Nandi S, et al. Diabetic Cardiomyopathy: An Immunometabolic Perspective. Front Endocrinol. 2017;8:72. https://doi.org/10.3389/fendo.2017.00072.

    Article  Google Scholar 

  44. Chen X, Li X, Xu X, et al. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Rad Res. 2021;55(4):405–15. https://doi.org/10.1080/10715762.2021.1876856.

    Article  CAS  Google Scholar 

  45. Rocha D, Caldas A, Oliveira L, Bressan J, Hermsdorff H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis. 2016;244:211–5. https://doi.org/10.1016/j.atherosclerosis.2015.11.015.

    Article  CAS  PubMed  Google Scholar 

  46. Nitz K, Lacy M, Atzler D. Amino Acids and Their Metabolism in Atherosclerosis. Arteriosclerosis Thrombosis Vasc Biol. 2019;39(3):319–30. https://doi.org/10.1161/atvbaha.118.311572.

    Article  CAS  Google Scholar 

  47. Liu G, Chen S, Zhong J, Teng K, Yin Y. Crosstalk between Tryptophan Metabolism and Cardiovascular Disease, Mechanisms, and Therapeutic Implications. Oxidative Med Cell Longevit. 2017;2017:1602074. https://doi.org/10.1155/2017/1602074.

    Article  CAS  Google Scholar 

  48. Mezrich J, Fechner J, Zhang X, et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol (Baltimore, Md : 1950). 2010;185(6):3190–8. https://doi.org/10.4049/jimmunol.0903670.

    Article  CAS  Google Scholar 

  49. Piatek K, Feuerstein A, Zach V, et al. Nitric oxide metabolites: associations with cardiovascular biomarkers and clinical parameters in patients with HFpEF. ESC Heart Failure. 2022;9(6):3961–72. https://doi.org/10.1002/ehf2.14116.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ye J, Palm W, Peng M, et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 2015;29(22):2331–6. https://doi.org/10.1101/gad.269324.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nitz K, Lacy M, Bianchini M, et al. The Amino Acid Homoarginine Inhibits Atherogenesis by Modulating T-Cell Function. Circ Res. 2022;131(8):701–12. https://doi.org/10.1161/circresaha.122.321094.

    Article  CAS  PubMed  Google Scholar 

  52. Burkhardt J, Carrizosa E, Shaffer M. The actin cytoskeleton in T cell activation. Annual Rev Immunol. 2008;26:233–59. https://doi.org/10.1146/annurev.immunol.26.021607.090347.

    Article  CAS  Google Scholar 

  53. Deng J, Lü S, Liu H, et al. Homocysteine Activates B Cells via Regulating PKM2-Dependent Metabolic Reprogramming. J Immunol (Baltimore, Md : 1950). 2017;198(1):170–83. https://doi.org/10.4049/jimmunol.1600613.

    Article  CAS  Google Scholar 

  54. Steinberg GR, Schertzer JD. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol. 2014;92(4):340–5. https://doi.org/10.1038/icb.2014.11.

    Article  CAS  PubMed  Google Scholar 

  55. Biswas S. Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity. 2015;43(3):435–49. https://doi.org/10.1016/j.immuni.2015.09.001.

    Article  CAS  PubMed  Google Scholar 

  56. Kelly B, O’Neill L. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25(7):771–84. https://doi.org/10.1038/cr.2015.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim J. Regulation of Immune Cell Functions by Metabolic Reprogramming. J Immunol Res. 2018;2018:8605471. https://doi.org/10.1155/2018/8605471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Song Y, Kim A, Kim G, et al. Inhibition of lactate dehydrogenase A suppresses inflammatory response in RAW 264.7 macrophages. Mol Med Rep. 2019;19(1):629–37. https://doi.org/10.3892/mmr.2018.9678.

    Article  CAS  PubMed  Google Scholar 

  59. Yan J, Horng T. Lipid Metabolism in Regulation of Macrophage Functions. Trends Cell Biol. 2020;30(12):979–89. https://doi.org/10.1016/j.tcb.2020.09.006.

    Article  CAS  PubMed  Google Scholar 

  60. Lee J, Phelan P, Shin M, et al. SREBP-1a-stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1. Proc Natl Acad Sci USA. 2018;115(52):E12228-E12E34. https://doi.org/10.1073/pnas.1813458115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanchez-Lopez E, Zhong Z, Stubelius A, et al. Choline Uptake and Metabolism Modulate Macrophage IL-1β and IL-18 Production. Cell Metab. 2019;29(6):1350-62.e7. https://doi.org/10.1016/j.cmet.2019.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Feingold K, Shigenaga J, Kazemi M, et al. Mechanisms of triglyceride accumulation in activated macrophages. J Leukocyte Biol. 2012;92(4):829–39. https://doi.org/10.1189/jlb.1111537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shin K, Hwang I, Choe S, et al. Macrophage VLDLR mediates obesity-induced insulin resistance with adipose tissue inflammation. Nat Commun. 2017;8(1):1087. https://doi.org/10.1038/s41467-017-01232-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lampropoulou V, Sergushichev A, Bambouskova M, et al. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab. 2016;24(1):158–66. https://doi.org/10.1016/j.cmet.2016.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liao S, Han C, Xu D, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat Commun. 2019;10(1):5091. https://doi.org/10.1038/s41467-019-13078-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mills E, Ryan D, Prag H, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018;556(7699):113–7. https://doi.org/10.1038/nature25986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014;15(4):323–32. https://doi.org/10.1038/ni.2833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Neill L, Pearce E. Immunometabolism governs dendritic cell and macrophage function. J Exp Med. 2016;213(1):15–23. https://doi.org/10.1084/jem.20151570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol. 2015;15(1):18–29. https://doi.org/10.1038/nri3771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen H, Yang T, Zhu L, Zhao Y. Cellular metabolism on T-cell development and function. Int Rev Immunol. 2015;34(1):19–33. https://doi.org/10.3109/08830185.2014.902452.

    Article  CAS  PubMed  Google Scholar 

  71. Fox C, Hammerman P, Thompson C. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5(11):844–52. https://doi.org/10.1038/nri1710.

    Article  CAS  PubMed  Google Scholar 

  72. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic Instruction of Immunity. Cell. 2017;169(4):570–86. https://doi.org/10.1016/j.cell.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zheng L, Zhang Z. Decoding the genetic basis of anti-tumor immunity. Immunity. 2021;54(2):199–201. https://doi.org/10.1016/j.immuni.2021.01.005.

    Article  CAS  PubMed  Google Scholar 

  74. Shiraz A, Panther E, Reilly C. Altered Germinal-Center Metabolism in B Cells in Autoimmunity. Metabolites. 2022;12(1):40. https://doi.org/10.3390/metabo12010040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Imahashi N, Basar R, Huang Y, et al. Activated B cells suppress T-cell function through metabolic competition. J Immunother Cancer. 2022;10(12):e005644. https://doi.org/10.1136/jitc-2022-005644.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fu Y, Wang L, Yu B, Xu D, Chu Y. Immunometabolism shapes B cell fate and functions. Immunology. 2022;166(4):444–57. https://doi.org/10.1111/imm.13499.

    Article  CAS  PubMed  Google Scholar 

  77. Cyster JG, Allen CDC. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell. 2019;177(3):524–40. https://doi.org/10.1016/j.cell.2019.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Buck M, Sowell R, Kaech S, Pearce E. Metabolic Instruction of Immunity. Cell. 2017;169(4):570–86. https://doi.org/10.1016/j.cell.2017.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. DeBerge M, Chaudhary R, Schroth S, Thorp E. Immunometabolism at the Heart of Cardiovascular Disease. JACC Basic Trans Sci. 2023;8(7):884–904. https://doi.org/10.1016/j.jacbts.2022.12.010.

    Article  Google Scholar 

  80. Piccolo EB, Thorp EB, Sumagin R. Functional implications of neutrophil metabolism during ischemic tissue repair. Curr Opin Pharmacol. 2022;63:102191. https://doi.org/10.1016/j.coph.2022.102191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Papandreou I, Cairns R, Fontana L, Lim A, Denko N. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97. https://doi.org/10.1016/j.cmet.2006.01.012.

    Article  CAS  PubMed  Google Scholar 

  82. Willson J, Arienti S, Sadiku P, et al. Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood. 2022;139(2):281–6. https://doi.org/10.1182/blood.2021011010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mouton AJ, Hall JE. Novel roles of immunometabolism and nonmyocyte metabolism in cardiac remodeling and injury. Am J Physiol Regul Integr Comp Physiol. 2020;319(4):R476-RR84. https://doi.org/10.1152/ajpregu.00188.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Flores-Gomez D, Bekkering S, Netea M, Riksen N. Trained Immunity in Atherosclerotic Cardiovascular Disease. Arteriosclerosis Thrombosis Vasc Biol. 2021;41(1):62–9. https://doi.org/10.1161/atvbaha.120.314216.

    Article  CAS  Google Scholar 

  85. Netea MG, Joosten LA, Latz E, et al. Trained immunity: A program of innate immune memory in health and disease. Science (New York, NY). 2016;352(6284):aaf1098. https://doi.org/10.1126/science.aaf1098.

    Article  CAS  Google Scholar 

  86. Aghamajidi A, Gorgani M, Shahba F, Shafaghat Z, Mojtabavi N. The potential targets in immunotherapy of atherosclerosis. Int Rev Immunol. 2023;42(3):199–216. https://doi.org/10.1080/08830185.2021.1988591.

    Article  CAS  PubMed  Google Scholar 

  87. Zhu Y, Xian X, Wang Z, et al. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules. 2018;8(3):80. https://doi.org/10.3390/biom8030080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang S, Liang Y, Li L, et al. Succinate: A Novel Mediator to Promote Atherosclerotic Lesion Progression. DNA Cell Biol. 2022;41(3):285–91. https://doi.org/10.1089/dna.2021.0345.

    Article  CAS  PubMed  Google Scholar 

  89. Koelwyn G, Corr E, Erbay E, Moore K. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol. 2018;19(6):526–37. https://doi.org/10.1038/s41590-018-0113-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Feng X, Chen W, Ni X, et al. Metformin, Macrophage Dysfunction and Atherosclerosis. Front Immunol. 2021;12:682853. https://doi.org/10.3389/fimmu.2021.682853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tabas I, Bornfeldt KE. Intracellular and Intercellular Aspects of Macrophage Immunometabolism in Atherosclerosis. Circ Res. 2020;126(9):1209–27. https://doi.org/10.1161/circresaha.119.315939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bories G, Leitinger N. Macrophage metabolism in atherosclerosis. FEBS Lett. 2017;591(19):3042–60. https://doi.org/10.1002/1873-3468.12786.

    Article  CAS  PubMed  Google Scholar 

  93. Thomas C, Leleu D, Masson D. Cholesterol and HIF-1α: Dangerous Liaisons in Atherosclerosis. Front Immunol. 2022;13:868958. https://doi.org/10.3389/fimmu.2022.868958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Parathath S, Mick SL, Feig JE, et al. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ Res. 2011;109(10):1141–52. https://doi.org/10.1161/circresaha.111.246363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luo Y, Lu S, Gao Y, et al. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy. Aging. 2020;12(2):1704–24. https://doi.org/10.18632/aging.102708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhu X, Owen JS, Wilson MD, et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res. 2010;51(11):3196–206. https://doi.org/10.1194/jlr.M006486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mogilenko DA, Orlov SV, Trulioff AS, et al. Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. FASEB J: Off Publ Fed Am Soc Exp Biol. 2012;26(5):2019–30. https://doi.org/10.1096/fj.11-193946.

    Article  CAS  Google Scholar 

  98. Mayer D, Altvater M, Schenz J, et al. Monocyte Metabolism and Function in Patients Undergoing Cardiac Surgery. Front Cardiovasc Med. 2022;9:853967. https://doi.org/10.3389/fcvm.2022.853967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhai G, Qie S, Guo Q, Qi Y, Zhou Y. sDR5-Fc inhibits macrophage M1 polarization by blocking the glycolysis. J Geriatric Cardiol: JGC. 2021;18(4):271–80. https://doi.org/10.11909/j.issn.1671-5411.2021.04.003.

    Article  CAS  PubMed Central  Google Scholar 

  100. Chen Z, Dudek J, Maack C, Hofmann U. Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochem Pharmacol. 2021;190:114597. https://doi.org/10.1016/j.bcp.2021.114597.

    Article  CAS  PubMed  Google Scholar 

  101. Han J, Kim Y, Lim M, et al. Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair. ACS nano. 2018;12(2):1959–77. https://doi.org/10.1021/acsnano.7b09107.

    Article  CAS  PubMed  Google Scholar 

  102. Chen S, Luo X, Sun Y, Jin W, He R. A novel metabolic reprogramming strategy for the treatment of targeting to heart injury-mediated macrophages. Int Immunopharmacol. 2023;122:110377. https://doi.org/10.1016/j.intimp.2023.110377.

    Article  CAS  PubMed  Google Scholar 

  103. Littlewood-Evans A, Sarret S, Apfel V, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med. 2016;213(9):1655–62. https://doi.org/10.1084/jem.20160061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Aguiar C, Andrade V, Gomes E, et al. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium. 2010;47(1):37–46. https://doi.org/10.1016/j.ceca.2009.11.003.

    Article  CAS  PubMed  Google Scholar 

  105. Aguiar C, Rocha-Franco J, Sousa P, et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell commun Signal: CCS. 2014;12:78. https://doi.org/10.1186/s12964-014-0078-2.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fukushima A, Alrob O, Zhang L, et al. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. Am J Phys Heart Circ Physiol. 2016;311(2):H347–63. https://doi.org/10.1152/ajpheart.00900.2015.

    Article  Google Scholar 

  107. Guo Y, Cho S, Saxena D, Li X. Multifaceted Actions of Succinate as a Signaling Transmitter Vary with Its Cellular Locations. Endocrinol Metab (Seoul, Korea). 2020;35(1):36–43. https://doi.org/10.3803/EnM.2020.35.1.36.

    Article  CAS  Google Scholar 

  108. Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol. 2023;81(2):202–8. https://doi.org/10.1016/j.jjcc.2022.09.002.

    Article  PubMed  Google Scholar 

  109. Zhao M, Li F, Jian Y, et al. Salvianolic acid B regulates macrophage polarization in ischemic/reperfused hearts by inhibiting mTORC1-induced glycolysis. Eur J Pharmacol. 2020;871:172916. https://doi.org/10.1016/j.ejphar.2020.172916.

    Article  CAS  PubMed  Google Scholar 

  110. Diotallevi M, Ayaz F, Nicol T, Crabtree M. Itaconate as an inflammatory mediator and therapeutic target in cardiovascular medicine. Biochem Soc Trans. 2021;49(5):2189–98. https://doi.org/10.1042/bst20210269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ku H, Shen T, Cheng C. The potential of using itaconate as treatment for inflammation-related heart diseases. Tzu chi Med J. 2022;34(2):113–8. https://doi.org/10.4103/tcmj.tcmj_83_21.

    Article  PubMed  Google Scholar 

  112. Kanter J, Kramer F, Barnhart S, et al. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci USA. 2012;109(12):E715–24. https://doi.org/10.1073/pnas.1111600109.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Mouton A, Li X, Hall M, Hall J. Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ Res. 2020;126(6):789–806. https://doi.org/10.1161/circresaha.119.312321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fukushima A, Lopaschuk G. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochimica et Biophysica Acta. 2016;1861(10):1525–34. https://doi.org/10.1016/j.bbalip.2016.03.020.

    Article  CAS  PubMed  Google Scholar 

  115. Watanabe R, Hilhorst M, Zhang H, et al. Glucose metabolism controls disease-specific signatures of macrophage effector functions. JCI Insight. 2018;3(20):e123047. https://doi.org/10.1172/jci.insight.123047.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Suresh Babu S, Thandavarayan R, Joladarashi D, et al. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes. Sci Rep. 2016;6:36207. https://doi.org/10.1038/srep36207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hou Y, Wang Y, Tang K, et al. CD226 deficiency attenuates cardiac early pathological remodeling and dysfunction via decreasing inflammatory macrophage proportion and macrophage glycolysis in STZ-induced diabetic mice. FASEB J: Off Publ Fed Am Soc Exp Biol. 2023;37(8):e23047. https://doi.org/10.1096/fj.202300424RR.

    Article  CAS  Google Scholar 

  118. Tomczyk M, Kraszewska I, Dulak J, Jazwa-Kusior A. Modulation of the monocyte/macrophage system in heart failure by targeting heme oxygenase-1. Vasc Pharmacol. 2019;112:79–90. https://doi.org/10.1016/j.vph.2018.08.011.

    Article  CAS  Google Scholar 

  119. Davis F, Gallagher K. Epigenetic Mechanisms in Monocytes/Macrophages Regulate Inflammation in Cardiometabolic and Vascular Disease. Arteriosclerosis Thrombosis Vasc Biol. 2019;39(4):623–34. https://doi.org/10.1161/atvbaha.118.312135.

    Article  CAS  Google Scholar 

  120. Liu Y, Yu M, Shou S, Chai Y. Sepsis-Induced Cardiomyopathy: Mechanisms and Treatments. Front Immunol. 2017;8:1021. https://doi.org/10.3389/fimmu.2017.01021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen X, Wang S, Liu C, et al. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res. 2022;185:106473. https://doi.org/10.1016/j.phrs.2022.106473.

    Article  CAS  PubMed  Google Scholar 

  122. Zheng Z, Ma H, Zhang X, et al. Enhanced Glycolytic Metabolism Contributes to Cardiac Dysfunction in Polymicrobial Sepsis. J Infect Dis. 2017;215(9):1396–406. https://doi.org/10.1093/infdis/jix138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lin Y, Xu Y, Zhang Z. Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria. Inflammation. 2020;43(4):1184–200. https://doi.org/10.1007/s10753-020-01233-w.

    Article  CAS  PubMed  Google Scholar 

  124. Gaddis DE, Padgett LE, Wu R, et al. Atherosclerosis Impairs Naive CD4 T-Cell Responses via Disruption of Glycolysis. Arteriosclerosis Thrombosis Vasc Biol. 2021;41(9):2387–98. https://doi.org/10.1161/atvbaha.120.314189.

    Article  CAS  Google Scholar 

  125. Raphael I, Nalawade S, Eagar T, Forsthuber T. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 2015;74(1):5–17. https://doi.org/10.1016/j.cyto.2014.09.011.

    Article  CAS  PubMed  Google Scholar 

  126. Reilly N, Lutgens E, Kuiper J, Heijmans B, Wouter JJ. Effects of fatty acids on T cell function: role in atherosclerosis. Nat Rev Cardiol. 2021;18(12):824–37. https://doi.org/10.1038/s41569-021-00582-9.

    Article  PubMed  Google Scholar 

  127. Bi X, Li F, Liu S, et al. ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J Clin Investig. 2017;127(5):1757–71. https://doi.org/10.1172/jci87388.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Taghizadeh E, Taheri F, Gheibi Hayat S, et al. The atherogenic role of immune cells in familial hypercholesterolemia. IUBMB Life. 2020;72(4):782–9. https://doi.org/10.1002/iub.2179.

    Article  CAS  PubMed  Google Scholar 

  129. Sage A, Tsiantoulas D, Binder C, Mallat Z. The role of B cells in atherosclerosis. Nat Rev Cardiol. 2019;16(3):180–96. https://doi.org/10.1038/s41569-018-0106-9.

    Article  CAS  PubMed  Google Scholar 

  130. Tsiantoulas D, Diehl C, Witztum J, Binder C. B cells and humoral immunity in atherosclerosis. Circ Res. 2014;114(11):1743–56. https://doi.org/10.1161/circresaha.113.301145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Michalek R, Gerriets V, Jacobs S, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol (Baltimore, Md : 1950). 2011;186(6):3299–303. https://doi.org/10.4049/jimmunol.1003613.

    Article  CAS  Google Scholar 

  132. Shi L, Wang R, Huang G, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208(7):1367–76. https://doi.org/10.1084/jem.20110278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tan Y, Duan X, Wang B, Liu X, Zhan Z. Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration. NPJ Regen Med. 2023;8(1):7. https://doi.org/10.1038/s41536-023-00282-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mo F, Luo Y, Yan Y, et al. Are activated B cells involved in the process of myocardial fibrosis after acute myocardial infarction? An in vivo experiment. BMC Cardiovasc Disorders. 2021;21(1):5. https://doi.org/10.1186/s12872-020-01775-9.

    Article  CAS  Google Scholar 

  135. Wu L, Dalal R, Cao C, et al. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc Natl Acad Sci USA. 2019;116(43):21673–84. https://doi.org/10.1073/pnas.1911464116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kim D, Woo J, Min H, et al. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren’s syndrome. J Autoimmun. 2021;119:102611. https://doi.org/10.1016/j.jaut.2021.102611.

    Article  CAS  PubMed  Google Scholar 

  137. Hao F, Tian M, Zhang X, et al. Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation. Proc Natl Acad Sci USA. 2021;118(22):e2014681118. https://doi.org/10.1073/pnas.2014681118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lu Y, Zhao N, Wu Y, et al. Inhibition of PGK1 attenuates autoimmune myocarditis by reprogramming CD4+ T cells metabolism. Cardiovasc Res. 2023;119(6):1377–89. https://doi.org/10.1093/cvr/cvad029.

    Article  CAS  PubMed  Google Scholar 

  139. Nindl V, Maier R, Ratering D, et al. Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol. 2012;42(9):2311–21. https://doi.org/10.1002/eji.201142209.

    Article  CAS  PubMed  Google Scholar 

  140. Allison S. Hypertension: dendritic cells: linking oxidation and hypertension. Nat Rev Nephrol. 2014;10(12):674. https://doi.org/10.1038/nrneph.2014.191.

    Article  PubMed  Google Scholar 

  141. Kirabo A, Fontana V, de Faria A, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin investig. 2014;124(10):4642–56. https://doi.org/10.1172/jci74084.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ochando J, Ordikhani F, Boros P, Jordan S. The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cell Mol Immunol. 2019;16(4):350–6. https://doi.org/10.1038/s41423-019-0216-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang J, Huang F, Chen L, et al. Sodium Lactate Accelerates M2 Macrophage Polarization and Improves Cardiac Function after Myocardial Infarction in Mice. Cardiovasc Ther. 2021;2021:5530541. https://doi.org/10.1155/2021/5530541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kohlhauer M, Pell V, Burger N, et al. Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res Cardiol. 2019;114(3):18. https://doi.org/10.1007/s00395-019-0727-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mouton A, Flynn E, Moak S, et al. Dimethyl fumarate preserves left ventricular infarct integrity following myocardial infarction via modulation of cardiac macrophage and fibroblast oxidative metabolism. J Mol Cell Cardiol. 2021;158:38–48. https://doi.org/10.1016/j.yjmcc.2021.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liang S, Sun Q, Du Z, et al. PM induce the defective efferocytosis and promote atherosclerosis via HIF-1α activation in macrophage. Nanotoxicology. 2022;16(3):290–309. https://doi.org/10.1080/17435390.2022.2083995.

    Article  CAS  PubMed  Google Scholar 

  147. Zhou J, Liu W, Zhao X, et al. Natural Melanin/Alginate Hydrogels Achieve Cardiac Repair through ROS Scavenging and Macrophage Polarization. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2021;8(20):e2100505. https://doi.org/10.1002/advs.202100505.

    Article  CAS  Google Scholar 

  148. Baardman J, Verberk S, van der Velden S, et al. Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nat Commun. 2020;11(1):6296. https://doi.org/10.1038/s41467-020-20141-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xu H, Jiang J, Chen W, Li W, Chen Z. Vascular Macrophages in Atherosclerosis. J Immunol Res. 2019;2019:4354786. https://doi.org/10.1155/2019/4354786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gai X, Liu F, Wu Y, et al. Overexpressed PKM2 promotes macrophage phagocytosis and atherosclerosis. Animal Models Exp Med. 2023;6(2):92–102. https://doi.org/10.1002/ame2.12266.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81902136), Chinese Postdoctoral Science Foundation (2019M660106), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJA310006).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the conceptualization and writing of this manuscript.

Corresponding authors

Correspondence to Haiqiang Jiang or Lin Xia.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Ethics Approval

An ethics approval was not required to conduct this project, as data are not individualized and primary data were not collected.

Consent to Participate

Not applicable.

Consent for Publication

All authors have read and approved the content and agree to submit the final manuscript for consideration and publication in the journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, L., Zhang, Y., Zhang, Z. et al. Metabolism Serves as a Bridge Between Cardiomyocytes and Immune Cells in Cardiovascular Diseases. Cardiovasc Drugs Ther (2024). https://doi.org/10.1007/s10557-024-07545-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-024-07545-5

Keywords

Navigation