Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of macrophage immunometabolism in atherosclerosis

Abstract

After activation, cells of the myeloid lineage undergo robust metabolic transitions, as well as discrete epigenetic changes, that can dictate both ongoing and future inflammatory responses. In atherosclerosis, in which macrophages play central roles in the initiation, growth, and ultimately rupture of arterial plaques, altered metabolism is a key feature that dictates macrophage function and subsequent disease progression. This Review explores how factors central to the plaque microenvironment (for example, altered cholesterol metabolism, oxidative stress, hypoxia, apoptotic and necrotic cells, and hyperglycemia) shape the metabolic rewiring of macrophages in atherosclerosis as well as how these metabolic shifts in turn alter macrophage immune-effector and tissue-reparative functions. Finally, this overview offers insight into the challenges and opportunities of harnessing metabolism to modulate aberrant macrophage responses in disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic pathways controlling macrophage activation states.

Kim Caesar/Springer Nature

Fig. 2: Macrophage metabolic reprogramming in atherosclerotic plaques.

Kim Caesar/Springer Nature

Fig. 3: Epigenetic alterations that shape the macrophage immune response.

Kim Caesar/Springer Nature

Similar content being viewed by others

References

  1. Andrejeva, G. & Rathmell, J. C. Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 26, 49–70 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Lachmandas, E. et al. Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes. Nat. Microbiol. 2, 16246 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Liu, L. et al. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Proc. Natl Acad. Sci. USA 113, 1564–1569 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Stienstra, R., Netea-Maier, R. T., Riksen, N. P., Joosten, L. A. B. & Netea, M. G. Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses. Cell Metab. 26, 142–156 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Park, Y. M., Febbraio, M. & Silverstein, R. L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest. 119, 136–145 (2009).

    PubMed  CAS  Google Scholar 

  7. van Gils, J. M. et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 13, 136–143 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Tabas, I. & Lichtman, A. H. Monocyte-macrophages and T cells in atherosclerosis. Immunity 47, 621–634 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Tabas, I. & Glass, C. K. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339, 166–172 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 19, 1166–1172 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 10, 36–46 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. Grundy, S. M. et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Arterioscler. Thromb. Vasc. Biol. 24, e149–e161 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  PubMed  CAS  Google Scholar 

  17. Haschemi, A. et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15, 813–826 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ecker, J. et al. Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc. Natl Acad. Sci. USA 107, 7817–7822 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ménégaut, L., Thomas, C., Lagrost, L. & Masson, D. Fatty acid metabolism in macrophages: a target in cardio-metabolic diseases. Curr. Opin. Lipidol. 28, 19–26 (2017).

    PubMed  Google Scholar 

  20. Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Infantino, V. et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J. 438, 433–436 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Tallam, A. et al. Gene regulatory network inference of immunoresponsive gene 1 (IRG1) identifies interferon regulatory factor 1 (IRF1) as its transcriptional regulator in mammalian macrophages. PLoS One 11, e0149050 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24, 807–819 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Posokhova, E. N., Khoshchenko, O. M., Chasovskikh, M. I., Pivovarova, E. N. & Dushkin, M. I. Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors. Biochemistry (Mosc.) 73, 296–304 (2008).

    Article  CAS  Google Scholar 

  28. Feingold, K. R. et al. Mechanisms of triglyceride accumulation in activated macrophages. J. Leukoc. Biol. 92, 829–839 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ham, M. et al. Macrophage glucose-6-phosphate dehydrogenase stimulates proinflammatory responses with oxidative stress. Mol. Cell. Biol. 33, 2425–2435 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wallace, C. & Keast, D. Glutamine and macrophage function. Metabolism 41, 1016–1020 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. Huang, S. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tan, Z. et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194, 6082–6089 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Nomura, M. et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216–217 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Van den Bossche, J. et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 17, 684–696 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Pesce, J. T. et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 5, e1000371 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Boutens, L. et al. Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses. Diabetologia 61, 942–953 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Huang, S. C. et al. Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817–830 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Tavakoli, S., Zamora, D., Ullevig, S. & Asmis, R. Bioenergetic profiles diverge during macrophage polarization: implications for the interpretation of 18F-FDG PET imaging of atherosclerosis. J. Nucl. Med. 54, 1661–1667 (2013).

    Article  PubMed  CAS  Google Scholar 

  40. Izquierdo, E. et al. Reshaping of human macrophage polarization through modulation of glucose catabolic pathways. J. Immunol. 195, 2442–2451 (2015).

    Article  PubMed  CAS  Google Scholar 

  41. Na, Y. R. et al. Proteomic analysis reveals distinct metabolic differences between granulocyte-macrophage colony stimulating factor (GM-CSF) and macrophage colony stimulating factor (M-CSF) grown macrophages derived from murine bone marrow cells. Mol. Cell. Proteomics 14, 2722–2732 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cheng, S. C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. Folco, E. J. et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. J. Am. Coll. Cardiol. 58, 603–614 (2011).

    Article  PubMed  CAS  Google Scholar 

  44. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Murphy, A. J., Dragoljevic, D. & Tall, A. R. Cholesterol efflux pathways regulate myelopoiesis: a potential link to altered macrophage function in atherosclerosis. Front. Immunol. 5, 490 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754–758 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Murphy, A. J. & Tall, A. R. Disordered haematopoiesis and athero-thrombosis. Eur. Heart J. 37, 1113–1121 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gautier, E. L. et al. HDL and Glut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders. J. Exp. Med. 210, 339–353 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sarrazy, V. et al. Disruption of Glut1 in hematopoietic stem cells prevents myelopoiesis and enhanced glucose flux in atheromatous plaques of ApoE –/– mice. Circ. Res. 118, 1062–1077 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shirai, T. et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J. Exp. Med. 213, 337–354 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lee, S. J. et al. Oxidized low-density lipoprotein stimulates macrophage 18F-FDG uptake via hypoxia-inducible factor-1α activation through Nox2-dependent reactive oxygen species generation. J. Nucl. Med. 55, 1699–1705 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Bekkering, S. et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 34, 1731–1738 (2014).

    Article  PubMed  CAS  Google Scholar 

  54. Wang, Y., Wang, G. Z., Rabinovitch, P. S. & Tabas, I. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages. Circ. Res. 114, 421–433 (2014).

    Article  PubMed  CAS  Google Scholar 

  55. Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161 (2010).

    Article  PubMed  CAS  Google Scholar 

  56. Miller, Y. I. et al. Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler. Thromb. Vasc. Biol. 25, 1213–1219 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. Sheedy, F. J. et al. CD36 coordinates activation of the NLRP3 inflammasome by facilitating the intracellular nucleation of soluble to particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Haneklaus, M. & O’Neill, L. A. NLRP3 at the interface of metabolism and inflammation. Immunol. Rev. 265, 53–62 (2015).

    Article  PubMed  CAS  Google Scholar 

  60. Zhu, X. et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J. Lipid Res. 51, 3196–3206 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mogilenko, D. A. et al. Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. FASEB J. 26, 2019–2030 (2012).

    Article  PubMed  CAS  Google Scholar 

  62. Yvan-Charvet, L. et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 118, 1837–1847 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tawakol, A. et al. HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler. Thromb. Vasc. Biol. 35, 1463–1471 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Khallou-Laschet, J. et al. Macrophage plasticity in experimental atherosclerosis. PLoS One 5, e8852 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chinetti-Gbaguidi, G. et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ. Res. 108, 985–995 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Feig, J. E. et al. Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 123, 989–998 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Feig, J. E. et al. HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc. Natl Acad. Sci. USA 108, 7166–7171 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rayner, K. J. et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121, 2921–2931 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Cardilo-Reis, L. et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med. 4, 1072–1086 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kadl, A. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res. 107, 737–746 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Yvan-Charvet, L., Wang, N. & Tall, A. R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol. 30, 139–143 (2010).

    Article  PubMed  CAS  Google Scholar 

  72. Karunakaran, D. et al. Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti-miR33 in atherosclerosis. Circ. Res. 117, 266–278 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. McCarthy, C. et al. Macrophage PPAR gamma co-activator-1 alpha participates in repressing foam cell formation and atherosclerosis in response to conjugated linoleic acid. EMBO Mol. Med. 5, 1443–1457 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Vilne, B. et al. Network analysis reveals a causal role of mitochondrial gene activity in atherosclerotic lesion formation. Atherosclerosis 267, 39–48 (2017).

    Article  PubMed  CAS  Google Scholar 

  75. Ouimet, M. et al. miRNA targeting of oxysterol-binding protein-like 6 regulates cholesterol trafficking and efflux. Arterioscler. Thromb. Vasc. Biol. 36, 942–951 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rayner, K. J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 1570–1573 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ouimet, M. et al. microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 37, 1058–1067 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Ouimet, M. et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat. Immunol. 17, 677–686 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Dávalos, A. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc. Natl Acad. Sci. USA 108, 9232–9237 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rotllan, N., Ramírez, C. M., Aryal, B., Esau, C. C. & Fernández-Hernando, C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr–/– mice: brief report. Arterioscler. Thromb. Vasc. Biol. 33, 1973–1977 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ouimet, M. et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J. Clin. Invest. 125, 4334–4348 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vendrov, A. E. et al. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler. Thromb. Vasc. Biol. 27, 2714–2721 (2007).

    Article  PubMed  CAS  Google Scholar 

  83. Yu, E. P. K. et al. Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. Arterioscler. Thromb. Vasc. Biol. 37, 2322–2332 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Guo, H., Callaway, J. B. & Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Rongvaux, A. et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364–372 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Sergin, I., Evans, T. D., Bhattacharya, S. & Razani, B. Hypoxia in plaque macrophages: a new danger signal for interleukin-1β activation? Circ. Res. 115, 817–820 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Aarup, A. et al. Hypoxia-inducible factor-1α expression in macrophages promotes development of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 36, 1782–1790 (2016).

    Article  PubMed  CAS  Google Scholar 

  91. Sluimer, J. C. et al. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J. Am. Coll. Cardiol. 51, 1258–1265 (2008).

    Article  PubMed  CAS  Google Scholar 

  92. Marsch, E. et al. Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis. Arterioscler. Thromb. Vasc. Biol. 34, 2545–2553 (2014).

    Article  PubMed  CAS  Google Scholar 

  93. Corcoran, S. E. & O’Neill, L. A. HIF1α and metabolic reprogramming in inflammation. J. Clin. Invest. 126, 3699–3707 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Folco, E. J., Sukhova, G. K., Quillard, T. & Libby, P. Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ. Res. 115, 875–883 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Parathath, S. et al. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ. Res. 109, 1141–1152 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).

    Article  PubMed  CAS  Google Scholar 

  97. Tufanli, O. et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc. Natl Acad. Sci. USA 114, E1395–E1404 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Erbay, E. et al. Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis. Nat. Med. 15, 1383–1391 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Park, D. et al. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477, 220–224 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Liesa, M. & Shirihai, O. S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17, 491–506 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Wang, Y. et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331–345.e322 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Schrijvers, D. M., De Meyer, G. R., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25, 1256–1261 (2005).

    Article  PubMed  CAS  Google Scholar 

  103. Bornfeldt, K. E. & Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 14, 575–585 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Nagareddy, P. R. et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17, 695–708 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Nishizawa, T. et al. Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis. Cell Rep. 7, 356–365 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Liu, T. F., Vachharajani, V. T., Yoza, B. K. & McCall, C. E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287, 25758–25769 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e112 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Bekkering, S. et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135–146.e139 (2018).

    Article  PubMed  CAS  Google Scholar 

  110. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e114 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. van der Valk, F. M. et al. Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation 134, 611–624 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Bekkering, S. et al. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis 254, 228–236 (2016).

    Article  PubMed  CAS  Google Scholar 

  113. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  PubMed  CAS  Google Scholar 

  114. Rahman, K. et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J. Clin. Invest. 127, 2904–2915 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of K.J.M. related to this review was supported by the National Institutes of Health (R35HL135799 and P01HL131481). G.J.K. was supported by a doctoral foreign study award from the Canadian Institutes of Health Research. E.E. was supported by an European Research Council Starting Grant (336643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn J. Moore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koelwyn, G.J., Corr, E.M., Erbay, E. et al. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol 19, 526–537 (2018). https://doi.org/10.1038/s41590-018-0113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0113-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing