Skip to main content
Log in

The quaternion beam model for hard-magnetic flexible cantilevers

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The recently developed hard-magnetic soft (HMS) materials manufactured by embedding high-coercivity micro-particles into soft matrices have received considerable attention from researchers in diverse fields, e.g., soft robotics, flexible electronics, and biomedicine. Theoretical investigations on large deformations of HMS structures are significant foundations of their applications. This work is devoted to developing a powerful theoretical tool for modeling and computing the complicated nonplanar deformations of flexible beams. A so-called quaternion beam model is proposed to break the singularity limitation of the existing geometrically exact (GE) beam model. The singularity-free governing equations for the three-dimensional (3D) large deformations of an HMS beam are first derived, and then solved with the Galerkin discretization method and the trust-region-dogleg iterative algorithm. The correctness of this new model and the utilized algorithms is verified by comparing the present results with the previous ones. The superiority of a quaternion beam model in calculating the complicated large deformations of a flexible beam is shown through several benchmark examples. It is found that the purpose of the HMS beam deformation is to eliminate the direction deviation between the residual magnetization and the applied magnetic field. The proposed new model and the revealed mechanism are supposed to be useful for guiding the engineering applications of flexible structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. SUN, W., MA, W., ZHANG, F., HONG, W., and LI, B. Snap-through path in a bistable dielectric elastomer actuator. Applied Mathematics and Mechanics (English Edition), 43(8), 1159–1170 (2022) https://doi.org/10.1007/s10483-022-2888-6

    Article  MathSciNet  Google Scholar 

  2. YIN, Y., ZHAO, D., LIU, J., and XU, Z. Nonlinear dynamic analysis of dielectric elastomer membrane with electrostriction. Applied Mathematics and Mechanics (English Edition), 43(6), 793–812 (2022) https://doi.org/10.1007/s10483-022-2853-9

    Article  MathSciNet  MATH  Google Scholar 

  3. GUO, Z., NI, Q., CHEN, W., DAI, H., and WANG, L. Dynamic analysis and regulation of the flexible pipe conveying fluid with a hard-magnetic soft segment. Applied Mathematics and Mechanics (English Edition), 43(9), 1415–1430 (2022) https://doi.org/10.1007/s10483-022-2901-9

    Article  MathSciNet  Google Scholar 

  4. LI, C., LAU, G. C., YUAN, H., AGGARWAL, A., DOMINGUEZ, V. L., LIU, S., SAI, H., PALMER, L. C., SATHER, N. A., PEARSON, T. J., FREEDMAN, D. E., AMIRI, P. K., CRUZ, M. O. D. L., and STUPP, S. I. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Science Robotics, 5(49), eabb9822 (2020)

    Article  Google Scholar 

  5. CIANCHETTI, M., LASCHI, C., MENCIASSI, A., and DARIO, P. Biomedical applications of soft robotics. Nature Reviews Materials, 3(6), 143–153 (2018)

    Article  Google Scholar 

  6. BAKHTIYARI, A., BAGHANI, M., and SOHRABPOUR, S. An investigation on multilayer shape memory polymers under finite bending through nonlinear thermo-visco-hyperelasticity. Applied Mathematics and Mechanics (English Edition), 44(1), 73–88 (2023) https://doi.org/10.1007/s10483-023-2952-6

    Article  MathSciNet  MATH  Google Scholar 

  7. LI, Y., CHEN, Y., REN, T., LI, Y., and CHOI, S. H. Precharged pneumatic soft actuators and their applications to untethered soft robots. Soft Robotics, 5(5), 567–575 (2018)

    Article  Google Scholar 

  8. LI, T., LI, G., LIANG, Y., CHENG, T., DAI, J., YANG, X., LIU, B., ZENG, Z., HUANG, Z., LUO, Y., XIE, T., and YANG, W. Fast-moving soft electronic fish. Science Advances, 3(4), e1602045 (2017)

    Article  Google Scholar 

  9. LI, G., CHEN, X., ZHOU, F., LIANG, Y., XIAO, Y., CAO, X., ZHANG, Z., ZHANG, M., WU, B., YIN, S., XU, Y., FAN, H., CHEN, Z., SONG, W., YANG, W., PAN, B., HOU, J., ZOU, W., HE, S., YANG, X., MAO, G., JIA, Z., ZHOU, H., LI, T., QU, S., XU, Z., HUANG, Z., LUO, Y., XIE, T., GU, J., ZHU, S., and YANG, W. Self-powered soft robot in the Mariana Trench. nature, 591(7848), 66–71 (2021)

    Article  Google Scholar 

  10. CHEN, J., YANG, S., LI, Y., HUANG, Y., and YIN, Z. Active curved surface deforming of flexible conformal electronics by multi-fingered actuator. Robotics and Computer-Integrated Manufacturing, 64, 101942 (2020)

    Article  Google Scholar 

  11. ZHOU, C., YANG, Y., WANG, J., WU, Q., GU, Z., ZHOU, Y., LIU, X., YANG, Y., TANG, H., LING, Q., WANG, L., and ZANG, J. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nature Communications, 12(1), 1–12 (2021)

    Google Scholar 

  12. ILAMI, M., BAGHERI, H., AHMED, R., SKOWRONEK, E. O., and MARVI, H. Materials, actuators, and sensors for soft bioinspired robots. Advanced Materials, 33(19), 2003139 (2021)

    Article  Google Scholar 

  13. RIGBI, Z. and JILKEN, L. The response of an elastomer filled with soft ferrite to mechanical and magnetic influences. Journal of Magnetism and Magnetic Materials, 37(3), 267–276 (1983)

    Article  Google Scholar 

  14. BORCEA, L. and BRUNO, O. On the magneto-elastic properties of elastomer-ferromagnet composites. Journal of the Mechanics and Physics of Solids, 49(12), 2877–2919 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. HU, W., LUM, G. Z., MASTRANGELI, M., and SITTI, M. Small-scale soft-bodied robot with multimodal locomotion. nature, 554(7690), 81–85 (2018)

    Article  Google Scholar 

  16. KIM, Y., YUK, H., ZHAO, R., CHESTER, S. A., and ZHAO, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. nature, 558(7709), 274–279 (2018)

    Article  Google Scholar 

  17. KUANG, X., WU, S., ZE, Q., YUE, L., JIN, Y., MONTGOMERY, S. M., YANG, F., QI, H. J., and ZHAO, R. Magnetic dynamic polymers for modular assembling and reconfigurable morphing architectures. Advanced Materials, 33(30), 2102113 (2021)

    Article  Google Scholar 

  18. WU, S., ZE, Q., DAI, J., UDIPI, N., PAULINO, G. H., and ZHAO, R. Stretchable origami robotic arm with omnidirectional bending and twisting. Proceedings of the National Academy of Sciences, 118(36), e2110023118 (2021)

    Article  Google Scholar 

  19. ALAPAN, Y., KARACAKOL, A. C., GUZELHAN, S. N., ISIK, I., and SITTI, M. Reprogrammable shape morphing of magnetic soft machines. Science Advances, 6(38), eabc6414 (2020)

    Article  Google Scholar 

  20. WANG, X., MAO, G., GE, J., DRACK, M., CAÑÓN BERMÚDEZ, G. S., WIRTHL, D., ILLING, R., KOSUB, T., BISCHOFF, L., WANG, C., FASSBENDER, J., KALTENBRUNNER, M., and MAKAROV, D. Untethered and ultrafast soft-bodied robots. Communications Materials, 1(1), 1–10 (2020)

    Article  Google Scholar 

  21. ZHAO, R., KIM, Y., CHESTER, S. A., SHARMA, P., and ZHAO, X. Mechanics of hard-magnetic soft materials. Journal of the Mechanics and Physics of Solids, 124, 244–263 (2019)

    Article  MathSciNet  Google Scholar 

  22. YAN, D., ABBASI, A., and REIS, P. M. A comprehensive framework for hard-magnetic beams: reduced-order theory, 3D simulations, and experiments. International Journal of Solids and Structures, 257, 111319 (2022)

    Article  Google Scholar 

  23. LUCARINI, S., HOSSAIN, M., and GARCIA-GONZALEZ, D. Recent advances in hard-magnetic soft composites: synthesis, characterisation, computational modelling, and applications. Composite Structures, 279, 114800 (2022)

    Article  Google Scholar 

  24. CHEN, W. and WANG, L. Theoretical modeling and exact solution for extreme bending deformation of hard-magnetic soft beams. Journal of Applied Mechanics—Transactions of the ASME, 87(4), 041002 (2020)

    Article  Google Scholar 

  25. WANG, L., KIM, Y., GUO, C. F., and ZHAO, X. Hard-magnetic elastica. Journal of the Mechanics and Physics of Solids, 142, 104045 (2020)

    Article  MathSciNet  Google Scholar 

  26. CHEN, W., YAN, Z., and WANG, L. Complex transformations of hard-magnetic soft beams by designing residual magnetic flux density. Soft Matter, 16(27), 6379–6388 (2020)

    Article  Google Scholar 

  27. CHEN, W., YAN, Z., and WANG, L. On mechanics of functionally graded hard-magnetic soft beams. International Journal of Engineering Science, 157, 103391 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. WANG, L., ZHENG, D., HARKER, P., PATEL, A. B., GUO, C. F., and ZHAO, X. Evolutionary design of magnetic soft continuum robots. Proceedings of the National Academy of Sciences, 118(21), e2021922118 (2021)

    Article  Google Scholar 

  29. CHEN, W., WANG, L., and PENG, Z. R. A magnetic control method for large-deformation vibration of cantilevered pipe conveying fluid. Nonlinear Dynamics, 105(2), 1459–1481 (2021)

    Article  Google Scholar 

  30. CHEN, W., WANG, L., YAN, Z., and LUO, B. Three-dimensional large-deformation model of hard-magnetic soft beams. Composite Structures, 266, 113822 (2021)

    Article  Google Scholar 

  31. SANO, T. G., PEZZULLA, M., and REIS, P. M. A Kirchhoff-like theory for hard magnetic rods under geometrically nonlinear deformation in three dimensions. Journal of the Mechanics and Physics of Solids, 160, 104739 (2022)

    Article  MathSciNet  Google Scholar 

  32. GOLDSTEIN, H., POOLE, C. P., and SAFKO, J. L. Classical Mechanics, 3rd ed., Addison-Wesley, New York (2001)

    MATH  Google Scholar 

  33. HEARD, W. B. Rigid Body Mechanics: Mathematics, Physics and Applications, John Wiley & Sons, Weinheim (2006)

    Google Scholar 

  34. CHELNOKOV, Y. N. Quaternion methods and models of regular celestial mechanics and astrodynamics. Applied Mathematics and Mechanics (English Edition), 43(1), 21–80 (2022) https://doi.org/10.1007/s10483-021-2797-9

    Article  MathSciNet  MATH  Google Scholar 

  35. COTTANCEAU, E., THOMAS, O., VÉRON, P., ALOCHET, M., and DELIGNY, R. A finite element/quaternion/asymptotic numerical method for the 3D simulation of flexible cables. Finite Elements in Analysis and Design, 139, 14–34 (2018)

    Article  MathSciNet  Google Scholar 

  36. GHOSH, S. and ROY, D. Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam. Computer Methods in Applied Mechanics and Engineering, 198(3–4), 555–571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. MALIKAN, M. and EREMEYEV, V. A. Flexomagneticity in buckled shear deformable hard-magnetic soft structures. Continuum Mechanics and Thermodynamics, 34(1), 1–16 (2022)

    Article  MathSciNet  Google Scholar 

  38. CHEN, W. and WANG, L. Large bending deformation of a cantilevered soft beam under external load: the applicability of inextensibility assumption of the centerline. Current Mechanics and Advanced Materials, 1(1), 24–38 (2021)

    Article  Google Scholar 

  39. NAYFEH, A. H. and PAI, P. F. Linear and Nonlinear Structural Mechanics, 1st ed., John Wiley & Sons, Weinheim, 195–199, 226–234 (2004)

    Book  MATH  Google Scholar 

  40. PAI, P. F. and PALAZOTTO, A. Large-deformation analysis of flexible beams. International Journal of Solids and Structures, 33(9), 1335–1353 (1996)

    Article  MATH  Google Scholar 

  41. WANG, X. C. Finite Element Method (in Chinese), 1st ed., Tsinghua University Press, Beijing, 272–277 (2003)

    Google Scholar 

  42. DING, G. T. Two ways to introduce undertermined multipliers to constrained mechanical systems (in Chinese). Mechanics in Engineering, 38(1), 83–86 (2016)

    Google Scholar 

  43. CHEN, W., DAI, H. L., JIA, Q. Q., and WANG, L. Geometrically exact equation of motion for large-amplitude oscillation of cantilevered pipe conveying fluid. Nonlinear Dynamics, 98(3), 2097–2114 (2019)

    Article  MATH  Google Scholar 

  44. CHEN, W., DAI, H. L., and WANG, L. Three-dimensional dynamical model for cantilevered pipes conveying fluid under large deformation. Journal of Fluids and Structures, 105, 103329 (2021)

    Article  Google Scholar 

  45. CHEN, W., ZHOU, K., WANG, L., and YIN, Z. Geometrically exact model and dynamics of cantilevered curved pipe conveying fluid. Journal of Sound and Vibration, 534, 117074 (2022)

    Article  Google Scholar 

  46. CHEN, W., WANG, L., and YAN, Z. On the dynamics of curved magnetoactive soft beams. International Journal of Engineering Science, 183, 103792 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  47. NI, Q., WANG, Y. K., TANG, M., LUO, Y. Y., YAN, H., and WANG, L. Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dynamics, 81(1), 893–906 (2015)

    Article  Google Scholar 

  48. DAI, H. L., HE, Y. X., ZHOU, K., PENG, Z. R., WANG, L., and HAGEDORN, P. Utilization of nonlinear vibrations of soft pipe conveying fluid for driving underwater bio-inspired robot. Applied Mathematics and Mechanics (English Edition), 43(7), 1109–1124 (2022) https://doi.org/10.1007/s10483-022-2866-7

    Article  MathSciNet  MATH  Google Scholar 

  49. HAO, M. Y., DING, H., MAO, X. Y., and CHEN, L. Q. Stability and nonlinear response analysis of parametric vibration for elastically constrained pipes conveying pulsating fluid. Acta Mechanica Solida Sinica (2022) https://doi.org/10.1007/s10338-022-00370-z

  50. YUAN, J. R. and DING, H. Dynamic model of curved pipe conveying fluid based on the absolute nodal coordinate formulation. International Journal of Mechanical Sciences, 232, 107625 (2022)

    Article  Google Scholar 

  51. WEI, S., YAN, X., FAN, X., MAO, X. Y., DING, H., and CHEN, L. Q. Vibration of fluid-conveying pipe with nonlinear supports at both ends. Applied Mathematics and Mechanics (English Edition), 43(6), 845–862 (2022) https://doi.org/10.1007/s10483-022-2857-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Yin.

Additional information

Citation: CHEN, W., WANG, G. Z., LI, Y. Q., WANG, L., and YIN, Z. P. The quaternion beam model for hard-magnetic flexible cantilevers. Applied Mathematics and Mechanics (English Edition), 44(5), 787–808 (2023) https://doi.org/10.1007/s10483-023-2983-8

Project supported by the National Key Research and Development Program of China (No. 2018YFA0703200), the National Natural Science Foundation of China (Nos. 52205594 and 51820105008), the China National Postdoctoral Program for Innovative Talents (No. BX20220118), and the China Postdoctoral Science Foundation (No. 2021M701306)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wang, G., Li, Y. et al. The quaternion beam model for hard-magnetic flexible cantilevers. Appl. Math. Mech.-Engl. Ed. 44, 787–808 (2023). https://doi.org/10.1007/s10483-023-2983-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2983-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation