Skip to main content
Log in

Identification and Characterization of miRNAs and Their Predicted mRNAs in the Larval Development of Pearl Oyster Pinctada fucata

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

As an important economic shellfish, the pearl oyster, Pinctada fucata, and its larvae are an ideal model for studying molecular mechanisms of larval development in invertebrates. Larval development directly affects the quantity and quality of pearl oysters. MicroRNAs (miRNAs) may play important roles in development, but the effects of miRNA expression on P. fucata early development remain unknown. In this study, miRNA and mRNA transcriptomics of seven different P. fucata developmental stages were analyzed using Illumina RNA sequencing. A total of 329 miRNAs, including 87 known miRNAs and 242 novel miRNAs, and 33,550 unigenes, including 26,333 known genes and 7217 predicted new genes, were identified in these stages. A cluster analysis showed that the difference in the numbers of miRNAs was greatest between fertilized eggs and trochophores. In addition, the integrated mRNA transcriptome was used to predict target genes for differentially expressed miRNAs between adjacent developmental stages, and the target genes were subjected to a gene ontology enrichment analysis. Using the gene ontology annotation, 100 different expressed genes and 95 differentially expressed miRNAs were identified as part of larval development regulation. Real-time PCR was used to identify eight mRNAs and three miRNAs related to larval development. The present findings will be helpful for further clarifying the regulatory mechanisms of miRNA in invertebrate larval development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

miRNAseq and RNAseq data have been deposited to the sequence read archive (SRA) with accession numbers SRR15315621–SRR15315641 and SRR15310576–SRR15310596, respectively. The datasets used and analyzed during the current study are also available from the corresponding author on reasonable request.

References

  • Addadi L, Joester D, Nudelman F, Weiner S (2010) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12(4):980–987. https://doi.org/10.1002/chem.200500980

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Baker SM, Mann R (1994) Description of metamorphic phases in the oyster Crassostrea virginica and effects of hypoxia on metamorphosis. Mar Ecol Prog Ser 104:91–99. https://doi.org/10.3354/meps104091

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caceres L, Prykhozhij SV, Cairns E, Gjerde H, Duff NM, Collett K, Berman JN (2019) Frizzled 4 regulates ventral blood vessel remodeling in the zebrafish retina. Dev Dyn 248:1243–1256

    Article  CAS  PubMed  Google Scholar 

  • Charron F, Tessier-Lavigne M (2005) Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132:2251–2262

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Shikina S, Chen WJ, Chung YJ, Chiu YL, Bertrand J, Lee YH, Chang CF (2016a) A novel female-specific and sexual reproduction-associated dmrt gene discovered in the stony coral, Euphyllia ancora1. Biol Reprod 94(2):40, 1–13. https://doi.org/10.1095/biolreprod.115.133173

  • Chen H, Zhou Z, Wang H, Wang L, Wang W, Liu R, Qiu L, Song L (2016b) An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting CgIκB2. Sci Rep 6:29591. https://doi.org/10.1038/srep29591

  • Chen H, Zhou Z, Wang L, Wang H, Liu R, Zhang H, Song L (2016c) An invertebrate-specific miRNA targeted the ancient cholinergic neuroendocrine system of oyster. Open Biol 6:160059. https://doi.org/10.1098/rsob.160059

  • Deng ZH, Wei HJ, Zhao W, Chen MQ, Yu G, Sun J, Li YN, Wang Y (2020) Embryonic development and larval cultivation of Paphia schnelliana (Dunker), a unique economic species of the Beibu Gulf. Aquaculture 533:736161. https://doi.org/10.1016/j.aquaculture.2020.736161

  • Du X, Fan G, Jiao Y, Zhang H, Guo X, Huang R, Zheng Z, Bian C, Deng Y, Wang Q, Wang Z, Liang X, Liang H, Shi C, Zhao X, Sun F, Hao R, Bai J, Liu J, Chen W, Liang J, Liu W, Xu Z, Shi Q, Xu X, Zhang G, Liu X (2017) The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization. GigaScience 6(8):1–12. https://doi.org/10.1093/gigascience/gix059

  • Felisa R, Gina MSN, Juan BP, Regina B (2019) Supply and larval traits at metamorphosis of a coastal marine invertebrate with a bi-phasic life cycle under contrasting oceanographic conditions. Prog Oceanogr 178:102201–102201

    Article  Google Scholar 

  • Foulon V, Boudry P, Artigaud S, Guérard F, Hellio C (2019) In silico analysis of Pacific Oyster (Crassostrea gigas) transcriptome over developmental stages reveals candidate genes for larval settlement. Int J Mol Sci 20:197. https://doi.org/10.3390/ijms20010197

    Article  CAS  PubMed Central  Google Scholar 

  • Fujimura T, Wada K, Iwaki T (1995) Development and morphology of the pearl oyster larvae, Pinctada fucata. Venus 54:25–48

    Google Scholar 

  • Hadfield MG, Meleshkevitch EA, Boudko DY (2000) The apical sensory organ of a gastropod veliger is a receptor for settlement cues. Biol Bull 198:67–76

    Article  CAS  PubMed  Google Scholar 

  • Hae KJ, Hey-Kyoung L, Kogo T, Huganir RL (2003) The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J Neurosci 23:1119–1124

    Article  Google Scholar 

  • Huan P, Wang H, Dong B, Liu B (2012) Identification of differentially expressed proteins involved in the early larval development of the Pacific oyster Crassostrea gigas. J Proteomics 75:3855–3865

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Ichikawa Y, Yoshitake K, Kinoshita S, Igarashi Y, Omori F, Maeyama K, Nagai K, Watabe S, Asakawa S (2019) Identification and characterization of microRNAs and their predicted functions in biomineralization in the pearl oyster (Pinctada fucata). Biology 8:47. https://doi.org/10.3390/biology8020047

    Article  CAS  PubMed Central  Google Scholar 

  • Huang T, Gu W, Liu E, Shi X, Wang B, Xu G, Yao Z (2020) Comprehensive analysis of miRNA-mRNA/lncRNA during gonadal development of triploid rainbow trout (Oncorhynchus mykiss). https://doi.org/10.21203/rs.3.rs-31357/v1

  • Jackson DJ, Ellemor N, Degnan BM (2005) Correlating gene expression with larval competence, and the effect of age and parentage on metamorphosis in the tropical abalone Haliotis asinina. Mar Biol 147:681–697. https://doi.org/10.1007/s00227-005-1603-z

    Article  Google Scholar 

  • Jackson DJ, Wörheide G, Degnan BM (2007) Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evol Biol 7:160. https://doi.org/10.1186/1471-2148-7-160

  • Jan K, Marc R (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:451–461

    Article  Google Scholar 

  • Jiao Y, Zheng Z, Du XD, Wang QH, Huang RL, Deng YW, Shi SL, Zhao XX (2014) Identification and characterization of microRNAs in pearl oyster Pinctada martensii by solexa deep sequencing. Mar Biotechnol 16:54. https://doi.org/10.1007/s10126-013-9528-x

    Article  CAS  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2005) MiRanda Application: Human microRNA targets. https://doi.org/10.1371/journal.pbio.0030264

  • Kanehisa M, Araki M, Goto S, Hattori M, Itoh M (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed  Google Scholar 

  • Kocamis H, Hossain MM, Cinar MU, Salilew-Wondim D, Mohammadi-Sangcheshmeh A, Tesfaye D, Hölker M, Schellander K (2013) Expression of microRNA and microRNA processing machinery genes during early quail (Coturnix japonica) embryo development. Poult Sci 92:787–797

    Article  CAS  PubMed  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha P, Kim S, Foxa GE, Michalski MN, Williams BO, Tomlinson RE, Riddle RC (2020) Frizzled-4 is required for normal bone acquisition despite compensation by Frizzled-8. J Cell Physiol 235:6673–6683

  • Leise EM, Thavaradhara K, Durham NR, Turner BE (2001) Serotonin and nitric oxide regulate metamorphosis in the marine snailIlyanassa obsoleta. Am Zool 41:258–267. https://doi.org/10.1093/icb/41.2.258

    Article  CAS  Google Scholar 

  • Li HM, Liu BS, Huang GJ, Fan SG, Zhang B, Su JQ, Yu DH (2017) Characterization of transcriptome and identification of biomineralization genes in winged pearl oyster (Pteria penguin) mantle tissue. Comp Biochem Physiol Part D: Genomics Proteomics 21:67–76

  • Li HM, Bai LR, Dong XY, Qi XH, Liu HY, Yu DH (2020a) SEM observation of early shell formation and expression of biomineralization-related genes during larval development in the pearl oyster Pinctada fucata. Comp Biochem Physiol Part d: Genomics Proteomics 33:100650. https://doi.org/10.1016/j.cbd.2019.100650

    Article  CAS  Google Scholar 

  • Li ZT, Zhang X, Wang DW, Xu J, Kou KJ, Wang ZW, Sun XY (2020b) Overexpressed lncRNA GATA6-AS1 inhibits LNM and EMT via FZD4 through the Wnt/β-catenin signaling pathway in GC. Mol Ther -- Nucleic Acids 19:827–840

  • Li HM, Zhang B, Huang GJ, Liu BS, Fan SG, Zhang DL, Yu DH (2016) Differential gene expression during larval metamorphic development in the pearl oyster, Pinctada fucata, based on transcriptome analysis. Int J Genomics 2016:1–15

    Google Scholar 

  • Liu G, Huan P, Liu BZ (2017) A SoxC gene related to larval shell development and co-expression analysis of different shell formation genes in early larvae of oyster. Dev Genes Evol 227(3):181–188. https://doi.org/10.1007/s00427-017-0579-2

    Article  CAS  PubMed  Google Scholar 

  • Lopes KP, Vinasco-Sandoval T, Vialle RA, Paschoal FM, Bastos VAP, Bor-Seng-Shu E, Teixeira MJ, Yamada ES, Pinto P, Vidal AF, Ribeiro-Dos-Santos A, Moreira F, Santos S, Paschoal EHA, Ribeiro-Dos-Santos  (2018) Global miRNA expression profile reveals novel molecular players in aneurysmal subarachnoid haemorrhage. Sci Rep 8:8786. https://doi.org/10.1038/s41598-018-27078-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malumbres M (2012) miRNAs versus oncogenes: the power of social networking. Mol Syst Biol 8:569. https://doi.org/10.1038/msb.2012.2

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu DH, Li BB, Xie SM, Dong ZG, Li JL (2020) Integrated mRNA and small RNA sequencing reveals regulatory expression of larval metamorphosis of the Razor Clam. Mar Biotechnol 22:696–705

  • Peng J, Zeng D, He P, Wei P, Hui W, Wu T, Lin Y (2019) mRNA and microRNA transcriptomics analyses in intermuscular bones of two carp species, rice flower carp (Cyprinus carpio var. Quanzhounensis) and Jian carp (Cyprinus carpio var. Jian). Comp Biochem Physiol Part d: Genomics Proteomics 30:71–80

    CAS  Google Scholar 

  • Puppo F, Sebbagh M, Helmbacher F, Levy N, Krahn M, Bartoli M (2014) G.P.14 from muscular architecture to function: the involvement of FAT1 protocadherin in FSHD. Neuromuscular Disord 24:798. https://doi.org/10.1016/j.nmd.2014.06.028

  • Renan X, Trejo-Martinez J, Caballero-Arango D, Brule T (2015) Growth stanzas in an Epinephelidae–Lutjanidae complex: considerations to length-weight relationships. Rev Biol Trop 63:175–187

  • Seaver EC, Kaneshige LM (2006) Expression of ‘segmentation’ genes during larval and juvenile development in the polychaetes Capitella sp. I and H. Elegans. Dev Biol 289:179–194

    Article  CAS  PubMed  Google Scholar 

  • Song H, Yu ZL, Sun LN, Gao Y, Zhang T, Wang HY (2016) De novo transcriptome sequencing and analysis of Rapana venosa from six different developmental stages using Hi-seq 2500. Comp Biochem Physiol Part D: Genomics Proteomics 17:48–57. https://doi.org/10.1016/j.cbd.2016.01.006

    Article  CAS  Google Scholar 

  • Stepicheva NA, Song JL (2015) MicroRNA-31 modulates skeletal patterning in the sea urchin embryo. Development 142:3769–3780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun F, Wang J, Pan Q, Yu Y, Zhang Y, Yang W, Ju W, Li X, An H (2009) Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun 380:660–665

    Article  CAS  PubMed  Google Scholar 

  • Sun JL, Liu Q, Zhao LL, Cui C, Wu H, Liao L, Yang S (2019) Potential regulation by miRNAs on glucose metabolism in liver of common carp (Cyprinus carpio) at different temperatures. Comp Biochem Physiol Part D: Genomics Proteomics 32:100628. https://doi.org/10.1016/j.cbd.2019.100628

  • Suquet M, Labbé C, Puyo S, Mingant C, Quittet B, Boulais M, Queau I, Ratiskol D, Diss B, Haffray P (2014) Survival, growth and reproduction of cryopreserved larvae from a marine invertebrate, the Pacific Oyster (Crassostrea gigas). PloS One 9:e93486. https://doi.org/10.1371/journal.pone.0093486

  • Tang X, Tang J, Zhou Y, Qu F, Zou J, Liu XT, Z, (2020) Effects of sodium butyrate stimulation on immune-related mRNA-miRNA network in intestine of grass carp. Aquacult Res 52:309–322

    Article  Google Scholar 

  • Tao WJ, Sun LN, Shi HJ, Cheng YY, Jiang DN, Fu B, Wang D (2016) Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation. BMC Genomics 17:328. https://doi.org/10.1186/s12864-016-2636-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teh CP, Zulfigar Y, Tan SH (2012) Epinephrine and l-DOPA promote larval settlement and metamorphosis of the tropical oyster, Crassostrea iredalei (Faustino, 1932): an oyster hatchery perspective. Aquaculture 338–341:260–263

  • Tian X, Pang X, Wang L, Li M, Dong C, Ma X, Li X (2018) Dynamic regulation of mRNA and miRNA associated with the developmental stages of skin pigmentation in Japanese ornamental carp. Gene 666:32–43

    Article  CAS  PubMed  Google Scholar 

  • Vogeler S, Wikfors GH, Li X, Veilleux D, Joyce A (2019) Larval metamorphosis in four bivalve species in response to NMDA receptor ligands: the NMDA receptor pathway as potential regulator of bivalve transition to spat. Aquaculture 511:634173. https://doi.org/10.1016/j.aquaculture.2019.05.058

    Article  CAS  Google Scholar 

  • Wang L, Song F, Yin H, Zhu W, Fu J, Dong Z, Xu P (2021a) Comparative microRNAs expression profiles analysis during embryonic development of common carp, Cyprinus carpio. Comp Biochem Physiol Part d: Genomics Proteomics 37:100754. https://doi.org/10.1016/j.cbd.2020.100754

    Article  CAS  Google Scholar 

  • Wang P, Zeng D, Xiong G, Zhou X, Jiang H, Hu Y, Wang X (2021b) Integrated analysis of mRNA-seq and microRNA-seq depicts the potential roles of miRNA-mRNA networks in pigmentation of Chinese soft-shelled turtle (Pelodiscus sinensis). Aquacult Rep 20:100686. https://doi.org/10.1016/j.aqrep.2021.100686

    Article  Google Scholar 

  • Wei P, He P, Zhang X, Li W, Zhang L, Guan J, Chen X, Lin Y, Zhuo X, Li Q, Peng J (2019) Identification and characterization of microRNAs in the gonads of Crassostrea hongkongensis using high-throughput sequencing. Comp Biochem Physiol Part d: Genomics Proteomics 31:100606. https://doi.org/10.1016/j.cbd.2019.100606

    Article  CAS  Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2010) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491

    Article  Google Scholar 

  • Wienholds E, Kloosterman W, Miska E, Alvarez-Saavedra E, Berezikov E, Bruijn ED, Horvitz HR, Kauppinen S, Plasterk RHA (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Bao J, Wang L, Hu Y, Chen X (2011) MicroRNA-184 downregulates nuclear receptor corepressor 2 in mouse spermatogenesis. BMC Dev Biol 11:1–10

    Article  Google Scholar 

  • Xu F, Wang XT, Feng Y, Huang W, Wang W, Li L, Fang XD, Que HY, Zhang GF (2014) Identification of conserved and novel microRNAs in the Pacific oyster Crassostrea gigas by deep sequencing. PLoS One 9:e104371. https://doi.org/10.1371/journal.pone.0104371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Zhang GF (2020) Transcriptomic and proteomic dynamics during metamorphosis of Pacific oyster Crassostrea gigas. https://doi.org/10.1101/2020.03.25.004614

  • Xue W, Wang WJ, Li Z, Sun GH, Xu XH, Feng YW, Luo QH, Li B, Zhang Q, Yang J (2021) Comprehensive analysis of differentially expressed ncRNA, mRNA, and their ceRNA networks in the regulation of glycogen content in the Pacific oyster Crassostrea gigas. Aquaculture 531:735895. https://doi.org/10.1016/j.aquaculture.2020.735895

  • Yu DL, Wu HF, Peng X, Ji CL, Zhang XY, Song J, Qu JL (2020) Profiling of microRNAs and mRNAs in marine mussel Mytilus galloprovincialis. Comp Biochem Physiol Part c: Toxicol Pharmacol 230:108697. https://doi.org/10.1016/j.cbpc.2019.108697

    Article  CAS  Google Scholar 

  • Yu H, You XX, Li J, Liu HK, Meng ZN, Xiao L, Zhang HF, Lin HR, Zhang Y, Shi Q (2016) Genome-wide mapping of growth-related quantitative trait loci in orange-spotted grouper (Epinephelus coioides) using double digest restriction-site associated DNA sequencing (ddradseq). Int J Mol Sci 17:501. https://doi.org/10.3390/ijms17040501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Zhe Z, Tian R, Du X, Wang Q, Huang R (2015) MicroRNA, Pm-miR-2305, participates in nacre formation by targeting pearlin in pearl oyster Pinctada martensii. Int J Mol Sci 16:21442–21453

    Article  Google Scholar 

  • Zhang GF, Fang XD, Guo XM, Li L, Luo RB, Xu F, Yang PC, Zhang LL, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PWH, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Lošo T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CEW, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

  • Zhang J, Xiong X, Deng Y, Zheng Z, Yang C, Du X (2021) Integrated application of transcriptomics and metabolomics provides insights into the larval metamorphosis of pearl oyster (Pinctada fucata martensii). Aquaculture 532:736067. https://doi.org/10.1016/j.aquaculture.2020.736067

    Article  CAS  Google Scholar 

  • Zhang Q, Dou W, Song ZH, Jin TJ, Yuan GR, De Schutter K, Smagghe G, Wang JJ (2020) Identification and profiling of Bactrocera dorsalis microRNAs and their potential roles in regulating the developmental transitions of egg hatching, molting, pupation and adult eclosion. Insect Biochem Mol Biol 127:103475. https://doi.org/10.1016/j.ibmb.2020.103475

    Article  CAS  PubMed  Google Scholar 

  • Zhe Z, Jiao Y, Du XD, Tian Q, Wang Q, Huang R, Deng Y (2016) Computational prediction of candidate miRNAs and their potential functions in biomineralization in pearl oyster Pinctada martensii. Saudi J Biol Sci 23:372–378

    Article  Google Scholar 

  • Zheng Z, Huang RL, Tian RR, Jiao Y, Du XD (2016) Pm-miR-133 hosting in one potential lncRNA regulates RhoA expression in pearl oyster Pinctada martensii. Gene 591:484–489

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2018YFD0901406), the National Natural Science Foundation of China (31873042), the Guangxi Key R&D Program (2018AB52002), the Guangxi Natural Science Foundation Program (2021GXNSFAA075008), the and Guangxi Key Laboratory of Marine Biodiversity Conservation Program (2021ZB02).

Author information

Authors and Affiliations

Authors

Contributions

Jian Chen and Dahui Yu contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jian Chen, Ziqin Zhai, Lili Lu, Suping Li, and Lirong Bai. The first draft of the manuscript was written by Jian Chen, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lirong Bai or Dahui Yu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhai, Z., Lu, L. et al. Identification and Characterization of miRNAs and Their Predicted mRNAs in the Larval Development of Pearl Oyster Pinctada fucata. Mar Biotechnol 24, 303–319 (2022). https://doi.org/10.1007/s10126-022-10105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10105-3

Keywords

Navigation