Skip to main content
Log in

Recent Advances in Bio-Inspired Versatile Polydopamine Platforms for “Smart” Cancer Photothermal Therapy

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Although photothermal therapy (PTT) has been developed for fighting cancers, the degradative, toxic, and metabolic nature of photothermal conversion materials (PCMs) has prevented them from being clinically implemented. Taking advantage of the surface modification strategy of mussel-inspired dopamine chemistry and its excellent photothermal conversion effect, polydopamine (Pdop) represents a versatile PTT platform, providing strategies and methods for the construction of novel Pdop-functionalized PCMs. Thanks to its adhesion and secondary reactivity, Pdop can be deposited on virtually all substrates to improve their bioavailability and biocompatibility. Pdop-based PCMs could not be only functionalized with small biomolecules via chemical bonds and/or noncovalent force but also modified with functional polymers via either the “grafting to” or “grafting from” method. This review highlights the synthetic methods, therapeutic strategies, and designs of PCMs based on Pdop in recent years to explore its scope and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castro, D. J.; Saxton, R. E.; Soudant, J. The concept of laser phototherapy. Otolaryngo.l Clin. North Am. 1996, 29, 1011–1029.

    Article  CAS  Google Scholar 

  2. Bai, Z.; Zhao, Z.; Tian, M.; Jin, D.; Pang, Y.; Li, S.; Yan, X.; Wang, Y.; Lu, Z. A comprehensive review on the development and applications of narrow-linewidth lasers. Microw. Opt. Technol. Lett. 2021, 64, 2244–2255.

    Article  Google Scholar 

  3. Li, X.; Lovell, J. F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

    Article  PubMed  Google Scholar 

  4. Zhu, H.; Cheng, P.; Chen, P.; Pu, K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater. Sci. 2018, 6, 746–765.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meng, Z.; Wei, F.; Wang, R.; Xia, M.; Chen, Z.; Wang, H.; Zhu, M. NIR-laser-switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors. Adv. Mater. 2016, 28, 245–53.

    Article  CAS  PubMed  Google Scholar 

  7. Zhi, D.; Yang, T.; O’Hagan, J.; Zhang, S.; Donnelly, R. F. Photothermal therapy. J. Control. Rel. 2020, 325, 52–71.

    Article  CAS  Google Scholar 

  8. Liu, S. W.; Wang, L.; Lin, M.; Liu, Y.; Zhang, L. N.; Zhang, H. Tumor photothermal therapy employing photothermal inorganic nanoparticles/polymers nanocomposites. Chinese J. Polym. Sci. 2018, 37, 115–128.

    Article  Google Scholar 

  9. Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, S.; Pan, X.; Liu, H. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 2020, 59, 5890–5900.

    Article  CAS  Google Scholar 

  11. Lv, Z.; He, S.; Wang, Y.; Zhu, X. Noble metal nanomaterials for NIR-triggered photothermal therapy in cancer. Adv. Healthc. Mater. 2021, 10, e2001806.

    Article  PubMed  Google Scholar 

  12. Chen, L.; Sun, X. Q.; Cheng, K.; Topham, P. D.; Xu, M. M.; Jia, Y. F.; Dong, D. H.; Wang, S.; Liu, Y.; Wang, L. G.; Yu, Q. Q. Temperature-regulating phase change fiber scaffold toward mild photothermal-chemotherapy. Adv. Fiber Mater. 2022, https://doi.org/10.1007/s42765-022-00199-8.

  13. Vines, J. B.; Yoon, J. H.; Ryu, N. E.; Lim, D. J.; Park, H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019, 7, 167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng, S. P.; Lu, J. Y.; Wang, K. L.; Di, D. H.; Shi, Z. N.; Zhao, Q. F.; Wang, S. L. Advances in smart mesoporous carbon nanoplatforms for photothermal-enhanced synergistic cancer therapy. Chem. Eng. J. 2022, 435, 134886.

    Article  CAS  Google Scholar 

  15. Chen, T. X.; Yao, T. T.; Peng, H.; Whittaker, A. K.; Li, Y.; Zhu, S. M.; Wang, Z. Y. An injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy with ultrahigh efficiency based on carbon dots and modified cellulose nanocrystals. Adv. Funct. Mater. 2021, 31, 2106079.

    Article  CAS  Google Scholar 

  16. Ding, Z. L.; Gu, Y. H.; Zheng, C.; Gu, Y. Q.; Yang, J.; Li, D. H.; Xu, Y. N.; Wang, P. Organic small molecule-based photothermal agents for cancer therapy: Design strategies from single-molecule optimization to synergistic enhancement. Coord. Chem. Rev. 2022, 464, 214564.

    Article  CAS  Google Scholar 

  17. Xu, L. G.; Cheng, L.; Wang, C.; Peng, R.; Liu, Z. Conjugated polymers for photothermal therapy of cancer. Polym. Chem. 2014, 5, 1573–1580.

    Article  CAS  Google Scholar 

  18. Wang, Y. F.; Meng, H. M.; Song, G. S.; Li, Z. H.; Zhang, X. B. Conjugated-polymer-based nanomaterials for photothermal therapy. ACS Appl. Polym. Mater. 2020, 2, 4258–4272.

    Article  CAS  Google Scholar 

  19. Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–43.

    Article  CAS  PubMed  Google Scholar 

  20. Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 311, 622–627.

    Article  CAS  PubMed  Google Scholar 

  21. Wu, D.; Zhou, J.; Creyer, M. N.; Yim, W.; Chen, Z.; Messersmith, P. B.; Jokerst, J. V. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem. Soc. Rev. 2021, 50, 4432–4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khan, K.; Tareen, A. K.; Iqbal, M.; Mahmood, A.; Mahmood, N.; Shi, Z.; Yin, J.; Qing, D.; Ma, C.; Zhang, H. Recent development in graphdiyne and its derivative materials for novel biomedical applications. J. Mater. Chem. B 2021, 9, 9461–9484.

    Article  CAS  PubMed  Google Scholar 

  23. Cao, W.; Zhou, X.; McCallum, N. C.; Hu, Z.; Ni, Q. Z.; Kapoor, U.; Heil, C. M.; Cay, K. S.; Zand, T.; Mantanona, A. J.; Jayaraman, A.; Dhinojwala, A.; Deheyn, D. D.; Shawkey, M. D.; Burkart, M. D.; Rinehart, J. D.; Gianneschi, N. C. Unraveling the structure and function of melanin through synthesis. J. Am. Chem. Soc. 2021, 143, 2622–2637.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

    Article  CAS  PubMed  Google Scholar 

  25. Ryu, J. H.; Messersmith, P. B.; Lee, H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. d’Ischia, M.; Napolitano, A.; Ball, V.; Chen, C. T.; Buehler, M. J. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. Acc. Chem. Res. 2014, 47, 3541–3550.

    Article  PubMed  Google Scholar 

  27. Yan, J.; Yang, L.; Lin, M. F.; Ma, J.; Lu, X.; Lee, P. S. Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Small 2013, 9, 596–603.

    Article  CAS  PubMed  Google Scholar 

  28. Ju, K. Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. K. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 2011, 12, 625–632.

    Article  CAS  PubMed  Google Scholar 

  29. Du, X.; Li, L.; Li, J.; Yang, C.; Frenkel, N.; Welle, A.; Heissler, S.; Nefedov, A.; Grunze, M.; Levkin, P. A. UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning. Adv. Mater. 2014, 26, 8029–8033.

    Article  CAS  PubMed  Google Scholar 

  30. Lee, H. A.; Ma, Y.; Zhou, F.; Hong, S.; Lee, H. Material-independent surface chemistry beyond polydopamine coating. Acc. Chem. Res. 2019, 52, 704–713.

    Article  CAS  PubMed  Google Scholar 

  31. Liebscher, J.; Mrowczynski, R.; Scheidt, H. A.; Filip, C.; Hadade, N. D.; Turcu, R.; Bende, A.; Beck, S. Structure of polydopamine: a never-ending story. Langmuir 2013, 29, 10539–10548.

    Article  CAS  PubMed  Google Scholar 

  32. Lee, H.; Scherer, N. F.; Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 12999–13003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng, H.; Hwang, D. S.; Israelachvili, J. N. Waite, Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 12850–12853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, C.; Ou, Y.; Lei, W. X.; Wan, L. S.; Ji, J.; Xu, Z. K. CuSO4/H2O2-Induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew. Chem. Int. Ed. 2016, 55, 3054–3057.

    Article  CAS  Google Scholar 

  36. Goh, S.; Luan, Y.; Wang, X.; Du, H.; Chau, C.; Schellhorn, H.; Brash, J.; Chen, H.; Fang, Q. Polydopamine-polyethylene glycol-albumin antifouling coatings on multiple substrates. J. Mater. Chem. B 2018, 6, 940–949.

    Article  CAS  PubMed  Google Scholar 

  37. Ma, Z.; Jia, X.; Hu, J.; Liu, Z.; Wang, H.; Zhou, F. Mussel-inspired thermosensitive polydopamine-graft-poly(N-isopropylacryl-amide) coating for controlled-release fertilizer. J. Agr. Food Chem. 2013, 61, 12232–12237.

    Article  CAS  Google Scholar 

  38. Sheng, W.; Li, B.; Wang, X.; Dai, B.; Yu, B.; Jia, X.; Zhou, F. Brushing up from “anywhere” under sunlight: a universal surface-initiated polymerization from polydopamine-coated surfaces. Chem. Sci. 2015, 6, 2068–2073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359.

    Article  CAS  PubMed  Google Scholar 

  40. Ding, X.; Liu, J. H.; Liu, D. P.; Li, J. Q.; Wang, F.; Li, L. J.; Wang, Y. H.; Song, S. Y.; Zhang, H. J. Multifunctional core/satellite polydopamine@Nd3+-sensitized upconversion nanocomposite: a single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy. Nano Res. 2017, 10, 3434–3446.

    Article  CAS  Google Scholar 

  41. Li, D.; Zhang, Y.; Wen, S.; Song, Y.; Tang, Y.; Zhu, X.; Shen, M.; Mignani, S.; Majoral, J. P.; Zhao, Q.; Shi, X. Construction of polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors: an innovative theranostic strategy. J. Mater. Chem. B 2016, 4, 4216–4226.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, T.; Li, S.; Liu, Y.; Guo, Q.; Wang, L.; Liu, D.; Zhou, J. Mn-complex modified NaDyF4:Yb@NaLuF4:Yb,Er@polydopamine core-shell nanocomposites for multifunctional imaging-guided photothermal therapy. J. Mater. Chem. B 2016, 4, 2697–2705.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, C.; Bai, J.; Liu, Y.; Jia, X.; Jiang, X. Polydopamine coated selenide molybdenum: a new photothermal nanocarrier for highly effective chemo-photothermal synergistic therapy. ACS Biomater. Sci. Eng. 2016, 2, 2011–2017.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, F.; Sun, Q.; Feng, B.; Xu, Z.; Zhang, J.; Xu, J.; Lu, L.; Yu, H.; Wang, M.; Li, Y.; Zhang, W. Polydopamine-functionalized graphene oxide loaded with gold nanostars and doxorubicin for combined photothermal and chemotherapy of metastatic breast cancer. Adv. Healthc. Mater. 2016, 5, 2227–2236.

    Article  CAS  PubMed  Google Scholar 

  45. Li, X. R.; Yin, B. L.; Gao, L.; Li, X. H.; Huang, H. W.; Song, G. S.; Zhou, Y. G. One-step reduction-encapsulated synthesis of Ag@polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy. Nano Res. 2022, 15, 8291–8303.

    Article  CAS  Google Scholar 

  46. Leng, J.; Dai, X.; Cheng, X.; Zhou, H.; Wang, D.; Zhao, J.; Ma, K.; Cui, C.; Wang, L.; Guo, Z. Biomimetic cucurbitacin b-polydopamine nanoparticles for synergistic chemo-photothermal therapy of breast cancer. Front. Bioeng. Biotechnol. 2022, 10, 841186.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen, R.; Zhu, C.; Fan, Y.; Feng, W.; Wang, J.; Shang, E.; Zhou, Q.; Chen, Z. Polydopamine-based multifunctional platform for combined photothermal therapy, chemotherapy, and immunotherapy in malignant tumor treatment. ACS Appl. Bio. Mater. 2019, 2, 874–883.

    Article  PubMed  Google Scholar 

  48. Du, X. F.; Li, Y.; Long, J.; Zhang, W.; Wang, D.; Li, C. R.; Zhao, M. X.; Lai, Y. Fabrication of cisplatin-loaded polydopamine nanoparticles via supramolecular self-assembly for photoacoustic imaging guided chemo-photothermal cancer therapy. Appl. Mater. Today 2021, 23, 101019.

    Article  Google Scholar 

  49. Li, S. N.; Zhang, L. Y.; Liang, X.; Wang, T. T.; Chen, X. J.; Liu, C. M.; Li, L.; Wang, C. G. Tailored synthesis of hollow MOF/polydopamine Janus nanoparticles for synergistic multi-drug chemophotothermal therapy. Chem. Eng. J. 2019, 378, 122175.

    Article  CAS  Google Scholar 

  50. Huang, C.; Zhang, L.; Guo, Q.; Zuo, Y.; Wang, N.; Wang, H.; Kong, D.; Zhu, D.; Zhang, L. Robust nanovaccine based on polydopamine-coated mesoporous silica nanoparticles for effective photothermal-immunotherapy against melanoma. Adv. Funct. Mater. 2021, 31, 2010637.

    Article  CAS  Google Scholar 

  51. Song, G.; Sun, Y. F.; Liu, T. Q.; Zhang, X. Y.; Zeng, Z. Y.; Wang, R. F.; Li, P. F.; Li, C. H.; Jiang, G. H. Transdermal delivery of Cu-doped polydopamine using microneedles for photothermal and chemodynamic synergistic therapy against skin melanoma. Chem. Eng. J. 2021, 426, 130790.

    Article  CAS  Google Scholar 

  52. Yang, G.; Li, M.; Song, T.; Chen, X.; Zhang, H.; Wei, X.; Li, N.; Li, T.; Qin, X.; Li, S.; You, F.; Wu, C.; Zhang, W.; Liu, Y.; Yang, H. Polydopamine-engineered theranostic nanoscouts enabling intracellular HSP90 mRNAs fluorescence detection for imaging-guided chemo-photothermal therapy. Adv. Healthc. Mater. 2022, 2201615.

  53. Wu, R.; Wang, H. Z.; Hai, L.; Wang, T. Z.; Hou, M.; He, D. G.; He, X. X.; Wang, K. M. A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chin. Chem. Lett. 2020, 31, 189–192.

    Article  CAS  Google Scholar 

  54. Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G. M. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater. 2013, 25, 998–1003.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Y.; Li, T.; Wang, X.; Ma, P.; Bai, H.; Dong, W.; Xie, Y.; Chen, M. Superior performance of polyurethane based on natural melanin nanoparticles. Biomacromolecules 2016, 17, 3782–3789.

    Article  CAS  PubMed  Google Scholar 

  56. Xing, Y.; Zhang, J.; Chen, F.; Liu, J.; Cai, K. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemophotothermal therapy. Nanoscale 2017, 9, 8781–8790.

    Article  CAS  PubMed  Google Scholar 

  57. Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6799–6802.

    Article  CAS  Google Scholar 

  58. Xu, H.; Liu, X.; Wang, D. Interfacial basicity-guided formation of polydopamine hollow capsules in pristine o/w emulsions-toward understanding of emulsion template roles. Chem. Mater. 2011, 23, 5105–5110.

    Article  CAS  Google Scholar 

  59. Zhuang, H.; Su, H.; Bi, X.; Bai, Y.; Chen, L.; Ge, D.; Shi, W.; Sun, Y. Polydopamine nanocapsule: a theranostic agent for photoacoustic imaging and chemo-photothermal synergistic therapy. ACS Biomater. Sci. Eng. 2017, 3, 1799–1808.

    Article  CAS  PubMed  Google Scholar 

  60. Shu, G.; Chen, M.; Song, J.; Xu, X.; Lu, C.; Du, Y.; Xu, M.; Zhao, Z.; Zhu, M.; Fan, K.; Fan, X.; Fang, S.; Tang, B.; Dai, Y.; Du, Y.; Ji, J. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer. Bioact. Mater. 2021, 6, 1423–1435.

    Article  CAS  PubMed  Google Scholar 

  61. Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 2011, 10, 671–684.

    Article  CAS  PubMed  Google Scholar 

  62. Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 2000, 41, 147–162.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou, D. H.; Zhang, G.; Yu, Q. S.; Gan, Z. H. Folic acid modified polymeric micelles for intravesical instilled chemotherapy. Chin. J. Polym. Sci. 2017, 36, 479–487.

    Article  Google Scholar 

  64. Fan, R.; Chen, C.; Hou, H.; Chuan, D.; Mu, M.; Liu, Z.; Liang, R.; Guo, G.; Xu, J. Tumor acidity and near-infrared light responsive dual drug delivery polydopamine-based nanoparticles for chemo-photothermal therapy. Adv. Funct. Mater. 2021, 31, 2009733.

    Article  CAS  Google Scholar 

  65. Li, J.; Zhang, Z.; Deng, H.; Zheng, Z. Cinobufagin-loaded and folic acid-modified polydopamine nanomedicine combined with photothermal therapy for the treatment of lung cancer. Front. Chem. 2021, 9, 637754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zeng, W. W.; Zhang, H. J.; Deng, Y. M.; Jiang, A. T.; Bao, X. Y.; Guo, M. Q.; Li, Z. M.; Wu, M. Y.; Ji, X. Y.; Zeng, X. W.; Mei, L. Dual-response oxygen-generating MnO2 nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy. Chem. Eng. J. 2020, 389, 124494.

    Article  CAS  Google Scholar 

  67. Wang, S.; Lin, Q. J.; Chen, J. T.; Gao, H. L.; Fu, D. L.; Shen, S. Biocompatible polydopamine-encapsulated gadolinium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. Carbon 2017, 112, 53–62.

    Article  CAS  Google Scholar 

  68. Guo, H.; Sun, H.; Zhu, H.; Guo, H.; Sun, H. Synthesis of Gd-functionalized Fe3O4@polydopamine nanocomposites for T1/T2 dual-modal magnetic resonance imaging-guided photothermal therapy. New J. Chem. 2018, 42, 7119–7124.

    Article  CAS  Google Scholar 

  69. Zhang, M.; Zheng, T.; Sheng, B. L.; Wu, F.; Zhang, Q. C.; Wang, W. T.; Shen, J.; Zhou, N. L.; Sun, Y. Mn2+ complex-modified polydopamine- and dual emissive carbon dots based nanoparticles for in vitro and in vivo trimodality fluorescent, photothermal, and magnetic resonance imaging. Chem. Eng. J. 2019, 373, 1054–1063.

    Article  CAS  Google Scholar 

  70. Lu, J.; Ni, C.; Huang, J.; Liu, Y.; Tao, Y.; Hu, P.; Wang, Y.; Zheng, S.; Shi, M. Biocompatible mesoporous silica-polydopamine nanocomplexes as MR/fluorescence imaging agent for light-activated photothermal-photodynamic cancer therapy in vivo. Front. Bioeng. Biotechnol. 2021, 9, 752982.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhang, N. N.; Shu, G. F.; Shen, L.; Ding, J. Y.; Qiao, E. Q.; Fang, S. J.; Song, J. J.; Yang, Y.; Zhao, Z. W.; Lu, C. Y.; Tu, J. F.; Xu, M.; Du, Y. Z.; Chen, M. J.; Ji, J. S. Biomimetic mesoporous polydopamine nanoparticles for MRI-guided photothermal-enhanced synergistic cascade chemodynamic cancer therapy. Nano Res. 2022, 15, 5262–5272.

    Article  CAS  Google Scholar 

  72. Zhao, F.; Ma, M. L.; Xu, B. Molecular hydrogels of therapeutic agents. Chem. Soc. Rev. 2009, 38, 883–891.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, X.; Wang, C. P.; Wang, X. Y.; Wang, Y. T.; Zhang, Q.; Cheng, Y. Y. A Polydopamine nanoparticle-knotted poly(ethylene glycol) hydrogel for on-demand drug delivery and chemo-photothermal therapy. Chem. Mater. 2017, 29, 1370–1376.

    Article  CAS  Google Scholar 

  74. Zhuang, B.; Chen, T.; Huang, Y.; Xiao, Z.; Jin, Y. Chemo-photothermal immunotherapy for eradication of orthotopic tumors and inhibition of metastasis by intratumoral injection of polydopamine versatile hydrogels. Acta Pharm. Sin. B 2022, 12, 1447–1459.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao, Z.; Zhang, H.; Chen, H.; Xu, Y.; Ma, L.; Wang, Z. An efficient photothermal-chemotherapy platform based on a polyacrylamide/phytic acid/polydopamine hydrogel. J. Mater. Chem. B 2022, 10, 4012–4019.

    Article  CAS  PubMed  Google Scholar 

  76. Ding, F.; Gao, X.; Huang, X.; Ge, H.; Xie, M.; Qian, J.; Song, J.; Li, Y.; Zhu, X.; Zhang, C. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials 2020, 245, 119976.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou, T.; Zhu, Y. Z.; Li, X.; Liu, X. M.; Yeung, K. W. K.; Wu, S. L.; Wang, X. B.; Cui, Z. D.; Yang, X. J.; Chu, P. K. Surface functionalization of biomaterials by radical polymerization. Prog. Mater. Sci. 2016, 83, 191–235.

    Article  CAS  Google Scholar 

  78. Ferruti, P.; Ranucci, E.; Sartore, L.; Bignotti, F.; Marchisio, M. A.; Bianciardi, P.; Veronese, F. M. Recent results on functional polymers and macromonomers of interest as biomaterials or for biomaterial modification. Biomaterials 1994, 15, 1235–1241.

    Article  CAS  PubMed  Google Scholar 

  79. Sun, W.; Liu, W.; Wu, Z.; Chen, H. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol. Rapid Commun. 2020, 41, 1900430.

    Article  CAS  Google Scholar 

  80. Wang, T.; Niu, K.; Ni, S.; Zhang, W. D.; Liu, Z. W.; Zhang, X. W. Hyaluronic acid-modified gold-polydopamine complex nanomedicine for tumor-targeting drug delivery and chemophotothermal-therapy synergistic therapy. ACS Sustain. Chem. Eng. 2022, 10, 1585–1594.

    Article  CAS  Google Scholar 

  81. Mou, C.; Yang, Y.; Bai, Y.; Yuan, P.; Wang, Y.; Zhang, L. Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J. Mater. Chem. B 2019, 7, 1246–1257.

    Article  CAS  PubMed  Google Scholar 

  82. Qiu, W. Z.; Wu, G. P.; Xu, Z. K. Robust coatings via catechol-amine codeposition: mechanism, kinetics, and application. ACS Appl. Mater. Interfaces 2018, 10, 5902–5908.

    Article  CAS  PubMed  Google Scholar 

  83. Liu, C. Y.; Huang, C. J. Functionalization of polydopamine via the Aza-Michael reaction for antimicrobial interfaces. Langmuir 2016, 32, 5019–5028.

    Article  CAS  PubMed  Google Scholar 

  84. Liu, M.; Zeng, G.; Wang, K.; Wan, Q.; Tao, L.; Zhang, X.; Wei, Y. Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale 2016, 8, 16819–16840.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, H.; Sun, Y.; Huang, R.; Cang, H.; Cai, Z.; Sun, B. pH-sensitive prodrug conjugated polydopamine for NIR-triggered synergistic chemo-photothermal therapy. Eur. J. Pharm. Biopharm. 2018, 128, 260–271.

    Article  CAS  PubMed  Google Scholar 

  86. Lu, W.; Liao, Y. X.; Jiang, C. Z.; Wang, R. M.; Shan, X. R.; Chen, Q.; Sun, G. Y.; Liu, J. H. Polydopamine- coated NaGdF4:Dy for T1/T2-weighted MRI/CT multimodal imaging- guided photothermal therapy. New J. Chem. 2019, 43, 7371–7378.

    Article  CAS  Google Scholar 

  87. Li, W.; Hu, J.; Wang, J.; Tang, W.; Yang, W.; Liu, Y.; Li, R.; Liu, H. Polydopamine-mediated polypyrrole/doxorubicin nanocomplex for chemotherapy-enhanced photothermal therapy in both NIR-I and NIR-II biowindows against tumor cells. J. Appl. Polym. Sci. 2020, 137, 49239.

    Article  CAS  Google Scholar 

  88. Liu, M.; Zhang, J.; Li, X.; Cai, C.; Cao, X.; Shi, X.; Guo, R. A polydopamine-coated LAPONITER-stabilized iron oxide nanoplatform for targeted multimodal imaging-guided photothermal cancer therapy. J. Mater. Chem. B 2019, 7, 3856–3864.

    Article  CAS  PubMed  Google Scholar 

  89. Yang, Z.; Ren, J.; Ye, Z.; Zhu, W.; Xiao, L.; Zhang, L.; He, Q.; Xu, Z.; Xu, H. Bio-inspired synthesis of PEGylated polypyrrole@polydopamine nanocomposites as theranostic agents for T1-weighted MR imaging guided photothermal therapy. J. Mater. Chem. B 2017, 5, 1108–1116.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, M.; Zhang, L.; Chen, Y.; Li, L.; Su, Z.; Wang, C. Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem. Sci. 2017, 8, 8067–8077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ding, X.; Liu, J.; Li, J.; Wang, F.; Wang, Y.; Song, S.; Zhang, H. Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem. Sci. 2016, 7, 6695–6700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fan, H.; Yan, T.; Chen, S.; Du, Z.; Alimu, G.; Zhu, L.; Ma, R.; Tang, X.; Heng, Y.; Alifu, N.; Zhang, X. Polydopamine encapsulated new indocyanine green theranostic nanoparticles for enhanced photothermal therapy in cervical cancer HeLa cells. Front. Bioeng. Biotechnol. 2022, 10, 984166.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hu, H. Y.; Yu, B.; Ye, Q.; Gu, Y. S.; Zhou, F. Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes. Carbon 2010, 48, 2347–2353.

    Article  CAS  Google Scholar 

  94. Zhu, B. C.; Edmondson, S. Polydopamine-melanin initiators for surface-initiated ATRP. Polymer 2011, 52, 2141–2149.

    Article  CAS  Google Scholar 

  95. Ma, Z.; Jia, X.; Zhang, G.; Hu, J.; Zhang, X.; Liu, Z.; Wang, H.; Zhou, F. pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator. J. Agric. Food Chem. 2013, 61, 5474–5482.

    Article  CAS  PubMed  Google Scholar 

  96. Yan, Q.; Fan, F.; Zhang, B.; Liu, G.; Chen, Y. MoS2 nanosheets functionalized with ferrocene-containing polymer via SI-ATRP for memristive devices with multilevel resistive switching. Eur. Polym. J. 2022, 174, 111316.

    Article  CAS  Google Scholar 

  97. Zhang, M.; Zou, Y.; Zhong, Y.; Liao, G.; Yu, C.; Xu, Z. Polydopamine-based tumor-targeted multifunctional reagents for computer tomography/fluorescence dual-mode bioimaging-guided photothermal therapy. ACS Appl. Bio Mater. 2019, 2, 630–637.

    Article  CAS  PubMed  Google Scholar 

  98. Li, S. S.; Wang, F.; Yang, Z. X. S.; Xu, J.; Liu, H.; Zhang, L. L.; Xu, W. S. Emulsifying performance of near-infrared light responsive polydopamine-based silica particles to control drug release. Powder Technol. 2020, 359, 17–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52003047), the Science and Technology Commission of Shanghai Municipality (No. 20JC1414900), and the Fundamental Research Funds for the Central Universities (No. 2232020D-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Fang Zhu.

Additional information

Notes

The authors declare no competing financial interest.

Biography

Mei-Fang Zhu obtained her PhD degree in Materials Science in 1999 from Donghua University (DHU, Shanghai). Currently, she is a Professor at DHU and a member of the Chinese Academy of Science. She also serves as the Dean for the College of Materials Science and Engineering in DHU and the Director of the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials. She has long been engaged in research on the fundamental chemistry, properties, and applications of fiber materials, organic/inorganic hybrid nano-materials, smart hydrogels and biomaterials for green energy, environment, and healthcare.

Electronic Supplementary Information

Electronic supplementary information (ESI) is available free of charge in the online version of this article at https://doi.org/10.1007/s10118-023-2926-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, ZY., Li, DY., Jia, X. et al. Recent Advances in Bio-Inspired Versatile Polydopamine Platforms for “Smart” Cancer Photothermal Therapy. Chin J Polym Sci 41, 699–712 (2023). https://doi.org/10.1007/s10118-023-2926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2926-2

Keywords

Navigation