Skip to main content
Log in

Photobiomodulation and Sida tuberculata combination declines the inflammation’s markers in knee-induced osteoarthritis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to assess potential combination effects of photobiomodulation therapy (PBMT) with Sida tuberculata extracts on the oxidative stress and antioxidant activity, as well as on the inflammatory process. Rats with knee osteoarthritis (OA) were treated with S. tuberculata extracts and PBMT (904 nm, 18 J/cm2). The animals were evaluated for nociception and edema. The blood, knee lavage and structures, spinal cord, and brainstem were collected for biochemical analyses (lipid peroxidation, protein carbonyl content, superoxide dismutase activity, non-protein thiol levels, and measurement of nitrite/nitrate). The knee structures were also used to measure cytokine levels. PBMT lowered the damage due to oxidative stress in the knee and at distant sites from the lesion. PBMT also reduced the levels of nitric oxide and cytokines, which could explain the nociception reduction mechanism. Similarly, S. tuberculata decreased the damage by oxidative stress, levels of nitrite/nitrate, and cytokines. The therapy combination reduced levels of cytokines and nitrite/nitrate. PBMT and S. tuberculata extracts reduced the oxidative stress and inflammation. It is noteworthy that PBMT increased the antioxidant activity in the knee and at sites distant from the lesion, contributing to a more significant decrease in nociception. The combination of therapies did not present significant effects on the analyzed parameters. Therefore, it is suggested that PBM is sufficient to minimize the signs and symptoms of the knee OA in our rat model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alves AC, Vieira R, Leal-Junior E, dos Santos S, Ligeiro AP, Albertini R, Junior J, de Carvalho P (2013) Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res Ther 15(5):R116. https://doi.org/10.1186/ar4296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim G, Kim E (2013) Anti-inflammation effects of low intensity laser therapy on monosodium iodoacetate-induced osteoarthritis in rats. J Phys Ther Sci 25(2):173–175. https://doi.org/10.1589/jpts.25.173

    Article  CAS  Google Scholar 

  3. Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540. https://doi.org/10.1038/srep30540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oliveira ME, Santos FM, Bonifacio RP, Freitas MF, Martins DO, Chacur M (2017) Low level laser therapy alters satellite glial cell expression and reverses nociceptive behavior in rats with neuropathic pain. Photochem Photobiol Sci 16(4):547–554. https://doi.org/10.1039/c6pp00360e

    Article  CAS  PubMed  Google Scholar 

  5. Yamada EF, Bobinski F, Martins DF, Palandi J, Folmer V, da Silva MD (2020) Photobiomodulation therapy in knee osteoarthritis reduces oxidative stress and inflammatory cytokines in rats. J Biophotonics 13(1):e201900204. https://doi.org/10.1002/jbio.201900204

    Article  CAS  PubMed  Google Scholar 

  6. WHO Scientific Group on the Burden of Musculoskeletal Conditions at the Start of the New Millennium (2003) The burden of musculoskeletal conditions at the start of the new millennium. World Health Organization technical report series 919:i-x, 1–218, back cover

  7. Carlo MD Jr, Loeser RF (2003) Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48(12):3419–3430. https://doi.org/10.1002/art.11338

    Article  CAS  PubMed  Google Scholar 

  8. Nirmal PS, Jagtap SD, Narkhede AN, Nagarkar BE, Harsulkar AM (2017) New herbal composition (OA-F2) protects cartilage degeneration in a rat model of collagenase induced osteoarthritis. BMC Complement Altern Med 17(1):6. https://doi.org/10.1186/s12906-016-1535-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. BSR BSoR (2017) Osteoartrite (Artrose). Brazilian Society of Rheumatology. https://www.reumatologia.org.br/doencas-reumaticas/osteoartrite-artrose/. Accessed 26th April 2019

  10. Nirmal P, Koppikar S, Bhondave P, Narkhede A, Nagarkar B, Kulkarni V, Wagh N, Kulkarni O, Harsulkar A, Jagtap S (2013) Influence of six medicinal herbs on collagenase-induced osteoarthritis in rats. Am J Chin Med 41(6):1407–1425. https://doi.org/10.1142/S0192415X13500948

    Article  PubMed  Google Scholar 

  11. da Rosa HS, Coelho IS, da Silva MD, Fernandes MS, Bertelli PR, Minetto L, Moura S, de Paula F, Santos AR, Mendez ASL, Folmer V (2019) Sida tuberculata extract reduces the nociceptive response by chemical noxious stimuli in mice: implications for mechanism of action, relation to chemical composition and molecular docking. Phytother Res 33(1):224–233. https://doi.org/10.1002/ptr.6220

    Article  CAS  PubMed  Google Scholar 

  12. Yamada EF, Olin LC, Pontel CL, da Rosa HS, Folmer V, da Silva MD (2020) Sida tuberculata reduces oxidative stress and pain caused by the knee osteoarthritis. J Ethnopharmacol 248:112277. https://doi.org/10.1016/j.jep.2019.112277

    Article  CAS  PubMed  Google Scholar 

  13. Yamada EF, Salgueiro AF, Goulart ADS, Mendes VP, Anjos BL, Folmer V, da Silva MD (2019) Evaluation of monosodium iodoacetate dosage to induce knee osteoarthritis: relation with oxidative stress and pain. Int J Rheum Dis 22(3):399–410. https://doi.org/10.1111/1756-185X.13450

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed AS, Li J, Erlandsson-Harris H, Stark A, Bakalkin G, Ahmed M (2012) Suppression of pain and joint destruction by inhibition of the proteasome system in experimental osteoarthritis. Pain 153(1):18–26. https://doi.org/10.1016/j.pain.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  15. Cifuentes DJ, Rocha LG, Silva LA, Brito AC, Rueff-Barroso CR, Porto LC, Pinho RA (2010) Decrease in oxidative stress and histological changes induced by physical exercise calibrated in rats with osteoarthritis induced by monosodium iodoacetate. Osteoarthr Cartil 18(8):1088–1095. https://doi.org/10.1016/j.joca.2010.04.004

    Article  CAS  Google Scholar 

  16. Moon SJ, Jeong JH, Jhun JY, Yang EJ, Min JK, Choi JY, Cho ML (2014) Ursodeoxycholic acid ameliorates pain severity and cartilage degeneration in monosodium iodoacetate-induced osteoarthritis in rats. Immune Netw 14(1):45–53. https://doi.org/10.4110/in.2014.14.1.45

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moon SJ, Woo YJ, Jeong JH, Park MK, Oh HJ, Park JS, Kim EK, Cho ML, Park SH, Kim HY, Min JK (2012) Rebamipide attenuates pain severity and cartilage degeneration in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. Osteoarthr Cartil 20(11):1426–1438. https://doi.org/10.1016/j.joca.2012.08.002

    Article  Google Scholar 

  18. Nagase H, Kumakura S, Shimada K (2012) Establishment of a novel objective and quantitative method to assess pain-related behavior in monosodium iodoacetate-induced osteoarthritis in rat knee. J Pharmacol Toxicol Methods 65(1):29–36. https://doi.org/10.1016/j.vascn.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  19. da Rosa HS, de Camargo VB, Camargo G, Garcia CV, Fuentefria AM, Mendez AS (2015) Ecdysteroids in Sida tuberculata R.E. Fries (Malvaceae): chemical composition by LC-ESI-MS and selective anti-Candida krusei activity. Food Chem 182:193–199. https://doi.org/10.1016/j.foodchem.2015.02.144

    Article  CAS  PubMed  Google Scholar 

  20. da Rosa HS, Salgueiro AC, Colpo AZ, Paula FR, Mendez AS, Folmer V (2016) Sida tuberculata (Malvaceae): a study based on development of extractive system and in silico and in vitro properties. Braz J Med Biol Res 49(8). https://doi.org/10.1590/1414-431X20165282

  21. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301

    Article  CAS  PubMed  Google Scholar 

  22. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63. https://doi.org/10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  23. da Silva MD, Cidral-Filho FJ, Winkelmann-Duarte EC, Cargnin-Ferreira E, Calixto JB, Dutra RC, Santos ARS (2017) Diacerein reduces joint damage, pain behavior and inhibits transient receptor potential vanilloid 1, matrix metalloproteinase and glial cells in rat spinal cord. Int J Rheum Dis 20(10):1337–1349. https://doi.org/10.1111/1756-185X.12741

    Article  CAS  PubMed  Google Scholar 

  24. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  25. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-h

    Article  CAS  PubMed  Google Scholar 

  26. Kostyuk VA, Potapovich AI (1989) Superoxide--driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem Int 19(5):1117–1124

    CAS  PubMed  Google Scholar 

  27. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. https://doi.org/10.1016/0003-9861(59)90090-6

    Article  CAS  PubMed  Google Scholar 

  28. Tatsch E, Bochi GV, Pereira Rda S, Kober H, Agertt VA, de Campos MM, Gomes P, Duarte MM, Moresco RN (2011) A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clin Biochem 44(4):348–350. https://doi.org/10.1016/j.clinbiochem.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  29. Bobinski F, Teixeira JM, Sluka KA, Santos ARS (2018) Interleukin-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain 159(3):437–450. https://doi.org/10.1097/j.pain.0000000000001109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2005) Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B 81(2):98–106. https://doi.org/10.1016/j.jphotobiol.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  31. Giuliani A, Lorenzini L, Gallamini M, Massella A, Giardino L, Calza L (2009) Low infrared laser light irradiation on cultured neural cells: effects on mitochondria and cell viability after oxidative stress. BMC Complement Altern Med 9:8. https://doi.org/10.1186/1472-6882-9-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS, Hamblin MR (2011) Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 6(7):e22453. https://doi.org/10.1371/journal.pone.0022453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang YY, Nagata K, Tedford CE, McCarthy T, Hamblin MR (2013) Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro. J Biophotonics 6(10):829–838. https://doi.org/10.1002/jbio.201200157

    Article  CAS  PubMed  Google Scholar 

  34. Attia AM, Ibrahim FA, Abd El-Latif NA, Aziz SW, Elwan AM, Abdel Aziz AA, Elgendy A, Elgengehy FT (2016) Therapeutic antioxidant and anti-inflammatory effects of laser acupuncture on patients with rheumatoid arthritis. Lasers Surg Med 48(5):490–497. https://doi.org/10.1002/lsm.22487

    Article  PubMed  Google Scholar 

  35. Dos Santos SA, Dos Santos Vieira MA, Simoes MCB, Serra AJ, Leal-Junior EC, de Carvalho PTC (2017) Photobiomodulation therapy associated with treadmill training in the oxidative stress in a collagen-induced arthritis model. Lasers Med Sci 32(5):1071–1079. https://doi.org/10.1007/s10103-017-2209-7

    Article  PubMed  Google Scholar 

  36. Frigero M, Dos Santos SA, Serra AJ, Dos Santos Monteiro Machado C, Portes LA, Tucci PJF, Silva F, Leal-Junior EC, de Carvalho PTC (2018) Effect of photobiomodulation therapy on oxidative stress markers of gastrocnemius muscle of diabetic rats subjected to high-intensity exercise. Lasers Med Sci 33(8):1781–1790. https://doi.org/10.1007/s10103-018-2540-7

    Article  PubMed  Google Scholar 

  37. Blanco FJ, Ochs RL, Schwarz H, Lotz M (1995) Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 146(1):75–85

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leonidou A, Lepetsos P, Mintzas M, Kenanidis E, Macheras G, Tzetis M, Potoupnis M, Tsiridis E (2018) Inducible nitric oxide synthase as a target for osteoarthritis treatment. Expert Opin Ther Targets 22(4):299–318. https://doi.org/10.1080/14728222.2018.1448062

    Article  CAS  PubMed  Google Scholar 

  39. Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212. https://doi.org/10.1111/php.12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Farrell AJ, Blake DR, Palmer RM, Moncada S (1992) Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis 51(11):1219–1222. https://doi.org/10.1136/ard.51.11.1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang P, Liu C, Yang X, Zhou Y, Wei X, Ji Q, Yang L, He C (2014) Effects of low-level laser therapy on joint pain, synovitis, anabolic, and catabolic factors in a progressive osteoarthritis rabbit model. Lasers Med Sci 29(6):1875–1885. https://doi.org/10.1007/s10103-014-1600-x

    Article  PubMed  Google Scholar 

  42. Wojdasiewicz P, Poniatowski LA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflamm 2014:561459. https://doi.org/10.1155/2014/561459

    Article  CAS  Google Scholar 

  43. Lockwood SM, Lopes DM, McMahon SB, Dickenson AH (2019) Characterisation of peripheral and central components of the rat monoiodoacetate model of osteoarthritis. Osteoarthr Cartil 27(4):712–722. https://doi.org/10.1016/j.joca.2018.12.017

    Article  CAS  Google Scholar 

  44. Brosseau L, Welch V, Wells G, DeBie R, Gam A, Harman K, Morin M, Shea B, Tugwell P (2004) Low level laser therapy (classes I, II and III) for treating osteoarthritis. Cochrane Database Syst Rev 3:CD002046. https://doi.org/10.1002/14651858.CD002046.pub2

    Article  Google Scholar 

  45. Hamblin MR (2013) Can osteoarthritis be treated with light? Arthritis Res Ther 15(5):120. https://doi.org/10.1186/ar4354

    Article  PubMed  PubMed Central  Google Scholar 

  46. Neves LMS, Goncalves ECD, Cavalli J, Vieira G, Laurindo LR, Simoes RR, Coelho IS, Santos ARS, Marcolino AM, Cola M, Dutra RC (2017) Photobiomodulation therapy improves acute inflammatory response in mice: the role of cannabinoid receptors/ATP-sensitive K(+) channel/p38-MAPK signalling pathway. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0792-z

  47. Milares LP, Assis L, Siqueira A, Claudino V, Domingos H, Almeida T, Tim C, Renno AC (2016) Effectiveness of an aquatic exercise program and low-level laser therapy on articular cartilage in an experimental model of osteoarthritis in rats. Connect Tissue Res 57(5):398–407. https://doi.org/10.1080/03008207.2016.1193174

    Article  CAS  PubMed  Google Scholar 

  48. Yamaura M, Yao M, Yaroslavsky I, Cohen R, Smotrich M, Kochevar IE (2009) Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg Med 41(4):282–290. https://doi.org/10.1002/lsm.20766

    Article  PubMed  Google Scholar 

  49. Bjordal JM, Johnson MI, Lopes-Martins RA, Bogen B, Chow R, Ljunggren AE (2007) Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord 8:51. https://doi.org/10.1186/1471-2474-8-51

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lafont R, Dinan L (2003) Practical uses for ecdysteroids in mammals including humans: an update. J Insect Sci 3:7. https://doi.org/10.1093/jis/3.1.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by CNPq and FAPESC, research-funding agencies in Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Yamada EF: Idea and experimental design, acquisition of data, data verification and interpretation, writing of the manuscript, critical revision, and final approval of the article

Stein CS: Collection and assembly of data and final approval of the article

Moresco RN: Data analyses and interpretation and final approval of the article

Bobinski F: Data analyses and interpretation and final approval of the article

Palandi J: Data collection and assembly and final approval of the article

Fernandes PF: Data collection, revision, and final approval of the article

Folmer V: Idea and experimental design, manuscript critical revision, and final approval of the article

Da Silva MD: Idea and experimental design, acquisition of data, data verification and interpretation, writing of the manuscript, manuscript critical revision, and final approval of the article

Corresponding author

Correspondence to Eloá Ferreira Yamada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study were approved by the Institutional Ethics Committee of the Universidade Federal do Pampa (RS/Brazil), protocol 004/2016, and were performed following the “Guidelines for Integrity and Good Practices for the Production, Maintenance or Use of Animals” from the CONCEA (Conselho Nacional de Controle de Experimentação Animal) resolution (no. 32, 09/2016).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, E.F., dos Santos Stein, C., Moresco, R.N. et al. Photobiomodulation and Sida tuberculata combination declines the inflammation’s markers in knee-induced osteoarthritis. Lasers Med Sci 37, 193–204 (2022). https://doi.org/10.1007/s10103-020-03207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03207-8

Keywords

Navigation