Skip to main content
Log in

Effects of low-level laser therapy on joint pain, synovitis, anabolic, and catabolic factors in a progressive osteoarthritis rabbit model

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of low-level laser therapy (LLLT) on short-term and long-term joint pain, synovitis, anabolic, and catabolic factors in the cartilage of a rabbit model with progressive osteoarthritis (OA) induced by anterior cruciate ligament transection (ACLT). A total of 160 New Zealand white rabbits were randomly assigned into two groups (ACLT group and LLLT group). All rabbits received ACLT surgery, and 2-, 4-, 6-, and 8-week treatment after the surgery, with 20 rabbits being tested biweekly over every study period. The LLLT group received LLLT with a helium–neon (He–Ne) laser (830 nm) of 1.5 J/cm2 three times per week, and the ACLT group received placebo LLLT with the equipment switched off. Long-term and short-term pain was tested via weight-bearing asymmetry; synovitis was assessed histologically; and knee joint cartilage was evaluated by gross morphology, histology, and gene expression analysis of anabolic and catabolic factors. The histological assessment of pain and synovitis showed that at least 6-week intermittent irradiation of LLLT could relief knee pain and control synovium inflammation. Gross morphologic inspection and histological evaluation showed that 6 weeks of LLLT could decrease cartilage damage of medical femoral condyle and 8 weeks of LLLT could decrease cartilage damage of medical and lateral femoral condyles and medical tibial plateau. Gene expression analysis revealed two results: At least 6 weeks of LLLT could decrease production of catabolic factors, for example, interleukin 1β (IL-1β), inducible nitric oxide synthase (iNOS), and MMP-3, and slow down the loss of anabolic factors, mainly TIMP-1. Eight weeks of LLLT treatment could slow down the loss of collagen II, aggrecan, and anabolic factors, mainly transforming growth factor beta (TGF-β). The study suggests that LLLT plays a protective role against cartilage degradation and synovitis in rabbits with progressive OA by virtue of the regulation of catabolic and anabolic factors in the cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Juni P, Reichenbach S, Dieppe P (2006) Osteoarthritis: rational approach to treating the individual. Best Pract Res Clin Rheumatol 20(4):721–740

    Article  PubMed  Google Scholar 

  2. Dean DD, Azzo W, Martel-Pelletier J et al (1987) Levels of metalloproteases and tissue inhibitor of metalloproteases in human osteoarthritic cartilage. J Rheumatol 14:43–44

    PubMed  CAS  Google Scholar 

  3. Mobasheri A (2012) Osteoarthritis year 2012 in review: biomarkers. Osteoarthr Cartil 20(12):1451–1464

    Article  PubMed  CAS  Google Scholar 

  4. Daans M, Lories RJ, Luyten FP (2008) Dynamic activation of bone morphogenetic protein signaling in collagen-induced arthritis supports their role in joint homeostasis and disease. Arthritis Res Ther 10(5):R115

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nakajima M, Kizawa H, Saitoh M et al (2007) Mechanisms for asporin function and regulation in articular cartilage. J Biol Chem 282(44):32185–32192

    Article  PubMed  CAS  Google Scholar 

  6. Loeser RF (2008) Molecular mechanisms of cartilage destruction in osteoarthritis. J Musculoskelet Nueronal Interact 8(4):303–306

    CAS  Google Scholar 

  7. Loeser RF (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum 54(5):1357–1360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Sarzi-Puttini P, Cimmino MA, Scarpa R et al (2005) Osteoarthritis: an overview of the disease and its treatment strategies. Semin Arthritis Rheum 35(1 Suppl 1):1–10

    Article  PubMed  CAS  Google Scholar 

  9. Lohmander LS, Roos EM (2007) Clinical update: treating osteoarthritis. Lancet 370(9605):2082–2084

    Article  PubMed  Google Scholar 

  10. Zhang W, Moskowitz RW, Nuki G et al (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr Cartil 16(2):137–162

    Article  PubMed  CAS  Google Scholar 

  11. Bjordal JM, Johnson MI, Lopes-Martins RA et al (2007) Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord 8:51

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bayat M, Ansari E, Gholami N et al (2007) Effect of low-level helium-neon laser therapy on histological and ultrastructural features of immobilized rabbit articular cartilage. J Photochem Photobiol B 87(2):81–87

    Article  PubMed  CAS  Google Scholar 

  13. Cho HJ, Lim SC, Kim SG et al (2004) Effect of low-level laser therapy on osteoarthropathy in rabbit. In Vivo 18(5):585–591

    PubMed  Google Scholar 

  14. Kamali F, Bayat M, Torkaman G et al (2007) The therapeutic effect of low-level laser on repair of osteochondral defects in rabbit knee. J Photochem Photobiol B88(1):11–15

    Article  Google Scholar 

  15. Lin HD, He CQ, Luo QL et al (2012) The effect of low-level laser to apoptosis of chondrocyte and caspases expression, including caspase-8 and caspase-3 in rabbit surgery-induced model of knee osteoarthritis. Rheumatol Int 32(3):759–766

    Article  PubMed  CAS  Google Scholar 

  16. Guo H, Luo Q, Zhang J et al (2011) Comparing different physical factors on serum TNF-alpha levels, chondrocyte apoptosis, caspase-3 and caspase-8 expression in osteoarthritis of the knee in rabbits. Jt Bone Spine 78(6):604–610

    Article  CAS  Google Scholar 

  17. Marcos RL, Leal-Junior EC, Messias FM et al (2011) Infrared (810 nm) low-level laser therapy in rat achilles tendinitis: a consistent alternative to drugs. Photochem Photobiol 87(6):1447–1452

    Article  PubMed  CAS  Google Scholar 

  18. Pallotta RC, Bjordal JM et al (2012) Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med Sci 27(1):71–78

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kamali F, Bayat M, Torkaman G et al (2007) The therapeutic effect of low-level laser on repair of osteochondral defects in rabbit knee. J Photochem Photobiol B88(1):11–15

    Article  Google Scholar 

  20. Bayat M, Javadieh F, Dadpay M (2009) Effect of He-Ne laser radiation on healing of osteochondral defect in rabbit: a histological study. J Rehabil Res Dev 46(9):1135–1142

    Article  PubMed  Google Scholar 

  21. Vignon E, Arlot M, Hartmann D et al (1983) Hypertrophic repair of articular cartilage in experimental osteoarthrosis. Ann Rheum Dis 42(1):82–88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Tochigi Y, Vaseenon T, Heiner AD et al (2011) Instability dependency of osteoarthritis development in a rabbit model of graded anterior cruciate ligament transection. J Bone Joint Surg Am 93(7):640–647

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pritzker KP (2011) Osteoarthritis: joint instability and OA: do animal models provide insights? Nat Rev Rheumatol 7(8):444–445

    Article  PubMed  Google Scholar 

  24. Laverty S, Girard CA, Williams JM et al (2010) The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the rabbit. Osteoarthr Cartil 18(Suppl 3):S53–S65

    Article  PubMed  Google Scholar 

  25. Hashizume M, Koike N, Yoshida H et al (2010) High molecular weight hyaluronic acid relieved joint pain and prevented the progression of cartilage degeneration in a rabbit osteoarthritis model after onset of arthritis. Mod Rheumatol 20(5):432–438

    Article  PubMed  CAS  Google Scholar 

  26. D’Souza WN, Ng GY, Youngblood BD et al (2011) A review of current animal models of osteoarthritis pain. Curr Pharm Biotechnol 12(10):1596–1612

    Article  PubMed  Google Scholar 

  27. Ashraf S, Mapp PI, Walsh DA (2011) Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. Arthritis Rheum 63(9):2700–2710

    Article  PubMed  CAS  Google Scholar 

  28. Pritzker KP, Aigner T (2010) Terminology of osteoarthritis cartilage and bone histopathology—a proposal for a consensus. Osteoarthr Cartil 18(Suppl 3):S7–S9

    Article  PubMed  Google Scholar 

  29. Pritzker KP, Gay S, Jimenez SA et al (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil 14(1):13–29

    Article  PubMed  CAS  Google Scholar 

  30. Yoshimi T, Kikuchi T, Obara T et al (1994) Effects of high-molecular-weight sodium hyaluronate on experimental osteoarthrosis induced by the resection of rabbit anterior cruciate ligament. Clin Orthop Relat Res 298:296–304

    PubMed  Google Scholar 

  31. Gur A, Cosut A, Sarac AJ et al (2003) Efficacy of different therapy regimes of low-power laser in painful osteoarthritis of the knee: a double-blind and randomized controlled trial. Lasers Surg Med 33(5):330–338

    Article  PubMed  Google Scholar 

  32. Hegedus B, Vihari L, Gervain M et al (2009) The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomed Laser Surg 27(4):577–584

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yurtkuran M, Alp A, Konur S (2006) Laser acupuncture in knee osteoarthritis: a double blind randomized controlled study. Photomed Laser Surg 25(1):14–20

    Article  Google Scholar 

  34. Bulow PM, Jensen H, Danneskiold-Samsoe B (1994) Low power Ga-Al-As laser treatment of painful osteoarthritis of the knee. A double-blind placebo-controlled study. Scand J Rehabil Med 26(3):155–159

    PubMed  CAS  Google Scholar 

  35. Hill CL, Hunter DJ, Niu J et al (2007) Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis 66(12):1599–1603

    Article  PubMed  PubMed Central  Google Scholar 

  36. Blaney DE, van der Kraan PM, van den Berg WB (2007) TGF-beta and osteoarthritis. Osteoarthr Cartil 15(6):597–604

    Article  Google Scholar 

  37. Bush JR, Beier F (2013) TGF-beta and osteoarthritis-the good and the bad. Nat Med 19(6):667–669

    Article  PubMed  CAS  Google Scholar 

  38. Ruggeri R, Pulsatelli L, Melchiorri C et al (1996) Differential expression of IL-1 and TNF receptors in inflammatory arthritis and osteoarthritis. Boll Soc Ital Biol Sper 72(1–2):15–20

    PubMed  CAS  Google Scholar 

  39. Attur MG, Patel IR, Petel RN et al (1998) Autocrine production of IL-1 beta by human osteoarthritis-affected cartilage and differential regulation of endogenous nitric oxide, IL-6, prostaglandin E2, and IL-8. Proc Assoc Am Physicians 110(1):65–72

    PubMed  CAS  Google Scholar 

  40. Needleman P, Manning PT (1999) Interactions between the inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) pathways: implications for therapeutic intervention in osteoarthritis. Osteoarthr Cartil 7(4):367–370

    Article  PubMed  CAS  Google Scholar 

  41. Naito K, Takahashi M, Kushida K et al (1999) Measurement of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-1 (TIMP-1) in patients with knee osteoarthritis: comparison with generalized osteoarthritis. Rheumatology (Oxford) 38(6):510–515

    Article  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengqi He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liu, C., Yang, X. et al. Effects of low-level laser therapy on joint pain, synovitis, anabolic, and catabolic factors in a progressive osteoarthritis rabbit model. Lasers Med Sci 29, 1875–1885 (2014). https://doi.org/10.1007/s10103-014-1600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1600-x

Keywords

Navigation