Skip to main content

Advertisement

Log in

The design space of dynamic interactive virtual environments

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Virtual environments have become a key component of many fields and the critical component of virtual reality applications. Due to their virtual nature, they can accommodate an infinite number of possibilities. A theoretical work is presented, which decomposes those innumerous possibilities into concepts to help clarify the vast design space and provide insights into future applied research. We propose that what makes environments interesting and engaging is having worlds that are both active and reactive. This article explores the manifestations of those actions and reactions in what we term: dynamic components and interactions. We term worlds containing these dynamic interactive virtual environments (DIVE). An analysis of each component time was performed, with the purpose of providing a theoretical understanding of the respective design spaces. Initially, we collected the myriad possibilities of each component, e.g., the possible kinds of interactions. We point to examples throughout the field to ground and explain concepts presented. We then categorized of each area into taxonomies. The result of the analyses provides insights into the design space of virtual environments, exposes several avenues of research that are yet underexplored, and provides better understandings of ways in which DIVE creation can be supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In prior publications, we had referred to these as “dynamics.” A discussion of the choice of nomenclature can be found in Online Resource 1.

  2. http://imve.informatik.uni-hamburg.de/projects/FRVR.

References

  • Beckhaus S (2003) Dynamic potential fields for guided exploration in virtual environments. 6. Fraunhofer Series in Information and Communication Technology, vol 6. Shaker Verlag, Aachen

  • Beckhaus S, Blom KJ, Haringer M (2007) ChairIO—the chair-based interface. In: Magerkurth C, Röcker C (eds) Concepts and technologies for pervasive games: a reader for pervasive gaming research, vol 1. Shaker Verlag, Aachen, pp 231–264

  • Bernier E, Chellali R, Mouttapa Thouvenin I, Blom KJ (2012) The ICED plug-in for virtual reality, immersive creation and edition of animation. In: Workshop on software engineering and architectures for real time interactive systems (SEARIS). Costa Mesa, CA, USA, pp 36–42. doi:10.1109/SEARIS.2012.6231167

  • Bierbaum A, Cruz-Neira C (2000) Run-time reconfiguration in VR Juggler. In: 4th immersive projection technology workshop

  • Billinghurst M, Kato H (2002) Collaborative augmented reality. Commun ACM 45(7):64–70

    Article  Google Scholar 

  • Blom KJ (2009) Dynamic, interactive virtual environments. Sierke Verlag, Göttingen

  • Blom KJ, Beckhaus S (2005) Emotional storytelling. In: IEEE virtual reality 2005 conference workshop “Virtuality structure”, Bonn, Germany, pp 23–27

  • Blom KJ, Beckhaus S (2007a) Functional reactive virtual reality. In: IPT/EGVE ’07: short paper proceedings of the IPT/EuroGraphics workshop on virtual environments, EuroGraphics Association, pp 295–302

  • Blom KJ, Beckhaus S (2007b) Supporting the creation of dynamic, interactive virtual environments. In: VRST ’07: proceedings of the 2007 ACM symposium on virtual reality software and technology, ACM Press, pp 51–54. doi:10.1145/1315184.1315191

  • Boussinot F, Susini JF, Tran FD, Hazard L (2001) A reactive behavior framework for dynamic virtual worlds. In: Web3D ’01: proceedings of the sixth international conference on 3D Web technology, ACM Press, New York, NY, USA, pp 69–75

  • Bowman DA, Hodges L (1999) Formalizing the design, evaluation, and application of interaction techniques for immersive virtual environments. J Vis Lang Comput 10(1):37–53

    Google Scholar 

  • Brooks H, DeKeyser T, Jaskot D, Sibert D, Sledd R, Stilwell W, Scherer W (2004) Using agent-based simulation to reduce collateral damage during military operations. In: Systems and information engineering design symposium, 2004. Proceedings of the 2004 IEEE, IEEE, pp 71–77

  • Bryson S (1997) Time, data-time, and real-time interactive visualization. Comput Phys Commun 11(3):270–274

    Article  Google Scholar 

  • Cavazza M, Hartley S, Lugrin JL, Bras ML (2003) Alternative reality: a new platform for virtual reality art. In: Proceedings of virtual reality software and technology (VRST), ACM Press, pp 100–107. doi:10.1145/1008653.1008672

  • Courtney A, Nilsson H, Peterson J (2003) The Yampa Arcade. In: ACM SIGPLAN Haskell workshop, ACM SIGPLAN, pp 7–18

  • Dachselt R, Rukzio E (2003) Behavior3D: an XML-based framework for 3D graphics behavior. In: Proceedings of the ACM Web3D 2003 conference, ACM Press, pp 101–112

  • Dede C (2009) Immersive interfaces for engagement and learning. Science 323(5910):66–69. doi:10.1126/science.1167311

    Article  Google Scholar 

  • de Haan G, Koutek M, Post FH (2005) IntenSelect: using dynamic object rating for assisting 3D object selection. In: Proceedings of the 9th IPT and 11th Eurographics VE workshop (EGVE), pp 201–209

  • Difede J, Cukor J, Jayasinghe N, Patt I, Jedel S, Spielman L, Giosan C, Hoffman H (2007) Virtual reality exposure therapy for the treatment of posttraumatic stress disorder following September 11, 2001. J Clin Psychiatry 68(11):1639–1647

    Google Scholar 

  • Elliott C, Hudak P (1997) Functional reactive animation. In: International conference on functional programming, pp 196–203

  • Emond B, Fournier H, Lapointe J et al (2010) Applying advanced user models and input technologies to augment military simulation-based training. In: Proceedings of the 2010 spring military modeling and simulation symposium, pp 1–7

  • Freeman D, Pugh K, Antley A, Slater M, Bebbington P, Gittins M, Dunn G, Kuipers E, Fowler D, Garety P (2008) Virtual reality study of paranoid thinking in the general population. Br J Psychiatry 192(4):258–263. doi:10.1192/bjp.bp.107.044677

    Article  Google Scholar 

  • Gorini A, Mosso J, Mosso D, Pineda E, Ruíz N, Ramíez M, Morales J, Riva G (2009) Emotional response to virtual reality exposure across different cultures: the role of the attribution process. CyberPsychol Behav 12(6):699–705

    Article  Google Scholar 

  • Guger C, Groenegress C, Holzner C, Edlinger G, Slater M (2009) Brain–computer interface for virtual reality control. Cyberpsychol Behav 12(1):84

    Google Scholar 

  • Haringer M, Beckhaus S (2010) Effect based scene manipulation for multimodal VR systems. In: IEEE VR 2010: proceedings of the IEEE virtual reality conference

  • Haringer M, Beckhaus S (2012) Adaptive generation of emotional impact using enhanced virtual environments. Presence 21(1):96–116

    Article  Google Scholar 

  • Hassanpour R, Wong S, Shahbahrami A (2008) Vision based hand gesture recognition for human computer interaction: a review. In: IADIS international conference interfaces and human computer interaction, p 125

  • Held RM, Durlach NI (1992) Telepresence. Presence Teleoper Virtual Environ 1:109–112

    Google Scholar 

  • Hernando J, Martinez J, Martin V, López M, Martin-Gago J (2009) Svis: a computational steering visualization environment for surface structure determination. In: Visualisation, 2009. VIZ’09. Second international conference in, IEEE, pp 36–39

  • Herrlich M, Walther-Franks B, Schröder-Kroll R, Holthusen J, Malaka R (2011) Proxy-based selection for occluded and dynamic objects. In: Smart graphics, Springer, pp 142–145

  • Hodges L, Rothbaum B, Alarcon R, Ready D, Shahar F, Graap K, Pair J, Hebert P, Gotz D, Wills B et al (1999) A virtual environment for the treatment of chronic combat-related post-traumatic stress disorder. Cyberpsychol Behav 2(1):7–14

    Article  Google Scholar 

  • Hoffman H, Garcia-Palacios A, Patterson D, Jensen M, Furness T III, Ammons W Jr (2001) The effectiveness of virtual reality for dental pain control: a case study. Cyberpsychol Behav 4(4):527–535

    Article  Google Scholar 

  • Kallmann M, Thalmann D (1999) Direct 3D interaction with smart objects. In: VRST ’99: proceedings of the ACM symposium on virtual reality software and technology, ACM Press, New York, NY, USA, pp 124–130. doi:10.1145/323663.323683

  • Konieczny J, Heckman J, Meyer G, Manyen M, Rabens M, Shimizu C (2008) Automotive spray paint simulation. Lecture Notes in Comput Sci 5358:998–1007

  • Kulik A (2009) Building on realism and magic for designing 3D interaction techniques. IEEE Comput Graph Appl 29(6):22–33. doi:10.1109/MCG.2009.115

    Article  MathSciNet  Google Scholar 

  • Mateas M, Stern A (2003) Facade: an experiment in building a fully-realized interactive drama. In: Proceedings of the game developer’s conference: Game Design Track

  • McLay RN, Wood DP, Webb-Murphy JA, Spira JL, Wiederhold MD, Pyne JM, Wiederhold BK (2010) A randomized, controlled trial of virtual reality-graded exposure therapy for post-traumatic stress disorder in active duty service members with combat-related post-traumatic stress disorder. Cyberpsychol Behav Soc Netw 13(1):3–11

    Article  Google Scholar 

  • Mesing B, Hellmich C (2006) Using aspect oriented methods to add behaviour to X3D documents. In: Proceedings of the ACM Web3D 2006 conference, ACM

  • Misra S, Ramesh K, Okamura A (2008) Modeling of tool–tissue interactions for computer-based surgical simulation: a literature review. Presence Teleoper Virtual Environ 17(5):463–491

    Article  Google Scholar 

  • Pape D (1998) Crayoland. In: SIGGRAPH ’98: ACM SIGGRAPH 98 electronic art and animation catalog, ACM Press, New York, NY, USA, p 116

  • Rehn GD, Lemessi M, Vance JM, Dorozhkin DV (2004) Integrating operations simulation results with an immersive virtual reality environment. In: WSC ’04: Proceedings of the 36th winter simulation conference, pp 1713–1719

  • Reiley C, Lin H, Yuh D, Hager G (2011) Review of methods for objective surgical skill evaluation. Surg Endosc 25(2):356–366

    Article  Google Scholar 

  • Richard P, Naud M, Inglese FX, Richard E (2012) Modeling dynamic interaction in virtual environments and the evaluation of dynamic virtual fixtures. Presence Teleoper Virtual Environ 21(3):321–337

    Article  Google Scholar 

  • Rizzo A, Rothbaum BO, Graap K (2007) Virtual reality applications for the treatment of combat-related PTSD. In: Figley CR, Nash WP (eds) Combat stress injury: theory, research, and management. Routledge, New York, pp 183–204

  • Roussos M, Johnson AE, Leigh J, Vasilakis CA, Barnes CR, Moher TG (1997) NICE: combining constructionism, narrative and collaboration in a virtual learning environment. Comput Graph 31(3):62–63. doi:10.1145/262171.262264

    Article  Google Scholar 

  • Salzmann H, Moehring M, Froehlich B (2009) Virtual vs. real-world pointing in two-user scenarios. In: VR ’09: Proceedings of the 2009 IEEE virtual reality conference, IEEE Computer Society, Washington, DC, USA, pp 127–130. doi:10.1109/VR.2009.4811011

  • Sanchez-Vives MV, Slater M (2005) From presence to consciousness through virtual reality. Nat Rev Neurosci 6(4):332–339

    Article  Google Scholar 

  • Schröder-Kroll R, Blom KJ, Beckhaus S (2008) Interaction techniques for dynamic virtual environments. In: Proceedings of “Virtuelle und Erweiterte Realität” workshop of the Gesellschaft für Informatik e.V. (GI), Shaker Verlag, pp 57–68

  • Sharar S, Miller W, Teeley A, Soltani M, Hoffman H, Jensen M, Patterson D (2008) Applications of virtual reality for pain management in burn-injured patients. Expert Rev Neurother 8(11):1667

    Article  Google Scholar 

  • Sheridan T (1992) Musings on telepresence and virtual presence. Presence Teleoper Virtual Environ 1(1):120–126

    Google Scholar 

  • Singhal S, Zyda M (1999) Networked virtual environments. Design and implementation. Addison Wesley, Reading

    Google Scholar 

  • Slater M (2009) Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos Trans R Soc Lond B Biol Sci 364(1535):3549–3557. doi:10.1098/rstb.2009.0138

    Article  Google Scholar 

  • Slater M, Lotto B, Arnold MM, Sanchez-Vives MV (2009) How we experience immersive virtual environments: the concept of presence and its measurement. Anu Psicol 40(2):193–210

    Google Scholar 

  • Steed A. (2006) Towards a general model for selection in virtual environments. In: Proceedings of the IEEE symposium on 3D user interfaces (3DUI), IEEE, pp 103–110

  • Steuer J (1992) Defining virtual reality: dimensions determining telepresence. J Commun 42(4):73–93

    Article  Google Scholar 

  • Takatalo J, Nyman G, Laaksonen L (2008) Components of human experience in virtual environments. Comput Hum Behav 24(1):1–15

    Article  Google Scholar 

  • Thomas F, Torras C (2001) 3D collision detection: a survey. Comput Graph 25:269–285

    Article  Google Scholar 

  • Van Dam A, Forsberg A, Laidlaw D, LaViola J Jr, Simpson R (2000) Immersive VR for scientific visualization: a progress report. Comput Graph Appl IEEE 20(6):26–52

    Article  Google Scholar 

  • van der Meijden O, Schijven M (2009) The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc 23(6):1180–1190

    Article  Google Scholar 

  • Wan Z, Hudak P (2000) Functional reactive programming from first principles. In: Conference on programming language design and implementation (PLDI’00), ACM SIGPLAN, ACM Press, pp 242–252

  • Wu W, Arefin A, Rivas R, Nahrstedt K, Sheppard R, Yang Z (2009) Quality of experience in distributed interactive multimedia environments: toward a theoretical framework. In: Proceedings of the seventeen ACM international conference on multimedia, ACM, pp 481–490

  • Xian-Yi C, Yan P (2011) Review of modern speech synthesis. In: Hu W (eds) Electronics and signal processing, lecture notes in electrical engineering, vol 97, Springer, Berlin, pp 517–524

    Google Scholar 

  • Yang U, Lee G, Kim Y, Jo D, Choi J, Kim K (2010) Virtual reality based welding training simulator with 3D multimodal interaction. In: Cyberworlds (CW), 2010 international conference on, IEEE, pp 150–154

  • Yannakakis GN, Hallam J (2009) Real-time game adaptation for optimizing player satisfaction. IEEE Trans Comput Intell AI Games 1(2):121–133

    Article  Google Scholar 

  • Zahorik P, Jenison R (1998) Presence as being-in-the-world. Presence 7(1):78–89

    Article  Google Scholar 

  • Zander TO, Kothe C (2011) Towards passive brain–computer interfaces: applying brain–computer interface technology to human-machine systems in general. J Neural Eng 8(2):025005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristopher J. Blom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (164 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blom, K.J., Beckhaus, S. The design space of dynamic interactive virtual environments. Virtual Reality 18, 101–116 (2014). https://doi.org/10.1007/s10055-013-0232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-013-0232-y

Keywords

Navigation