Skip to main content
Log in

Effect of pH on the electrodeposition nucleation and growth mechanism of cuprous oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we report the kinetics, nucleation, and growth mechanism of copper oxide electrodeposited on ITO from copper sulfate and lactic acid solutions at different pH values, using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). According to the cyclic voltammetry, the cathodic peak potential increases with increasing scan rate, indicating that the deposition of Cu2O is an irreversible process influenced by diffusion control. To further investigate the type of Cu2O nucleation, it was found that Cu2O followed diffusion-controlled three-dimensional transient nucleation by comparing the timing current curves with the Scharifker-Hills three-dimensional nucleation model. Furthermore, the three-dimensional transient nucleation was still followed regardless of the deposition potential and pH variation; this result was also confirmed from field emission scanning electron microscopy (FE-SEM). According to the EIS profile, the charge transfer resistance of Cu2O decreased with the increase in deposition potential; the charge transfer resistance was the smallest at pH = 9. In the timing current curve D (diffusion coefficient) showed a decreasing trend with increasing pH values. The nucleation pattern and growth process of nuclei at the early stage of electrodeposition are the basis for the formation of thin films, which is a guideline for obtaining films with better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu C-C, Nian J-N, Teng H (2008) Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3. Sol Energy Mater Sol Cells 92(9):1071–1076

    Article  CAS  Google Scholar 

  2. Sui Y, Zeng Y, Fu L et al (2013) Low-temperature synthesis of porous hollow structured Cu2O for photocatalytic activity and gas sensor application. RSC Adv 40(3)

  3. Liu C, Zhou X, Chen S et al (2019) Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells. Adv Sci (Weinh) 6(7):1801169

    Article  PubMed  Google Scholar 

  4. Rej S, Bisetto M, Naldoni A et al (2021) Well-defined Cu2O photocatalysts for solar fuels and chemicals. J Mater Chem A 9(10):5915–5951

    Article  CAS  Google Scholar 

  5. Minami T, Nishi Y, Miyata T (2016) Efficiency enhancement using a Zn1−xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Appl Phys Exp 9(5)

  6. Bergerot L, Jiménez C, Chaix-Pluchery O et al (2015) Growth and characterization of Sr-doped Cu2O thin films deposited by metalorganic chemical vapor deposition. Physica Status Solidi (a) 212(8):1735–1741

  7. Ma J, Guo S, Guo X et al (2015) Preparation, characterization and antibacterial activity of core–shell Cu2O@Ag composites. Surf Coat Technol 272:268–272

    Article  CAS  Google Scholar 

  8. Minami T, Nishi Y, Miyata T (2013) High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Appl Phys Exp 6(4)

  9. Yang M, Zhu L, Li Y et al (2013) Asymmetric interface band alignments of Cu2O/ZnO and ZnO/Cu2O heterojunctions. J Alloy Compd 578:143–147

    Article  CAS  Google Scholar 

  10. Mittiga A, Salza E, Sarto F et al (2006) Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl Phys Lett 88(16)

  11. Lei J, Yang J-G (2017) Electrochemical mechanism of tin membrane electro-deposition in chloride solutions. J Chem Technol Biotechnol 92(4):861–867

    Article  CAS  Google Scholar 

  12. Bouderbala IY, Herbadji A, Mentar L et al (2017) Optical properties of Cu2O electrodeposited on FTO substrates: Effects of Cl concentration. J Electron Mater 47(3):2000–2008

    Article  Google Scholar 

  13. Sun F, Guo Y, Song W et al (2007) Morphological control of Cu2O micro-nanostructure film by electrodeposition. J Cryst Growth 304(2):425–429

    Article  CAS  Google Scholar 

  14. Wang LC, De Tacconi NR, Chenthamarakshan CR et al (2007) Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Thin Solid Films 515(5):3090–3095

    Article  CAS  Google Scholar 

  15. Yang Y, Han J, Ning X et al (2014) Controllable morphology and conductivity of electrodeposited Cu2O thin film: effect of surfactants. ACS Appl Mater Interfaces 6(24):22534–22543

    Article  CAS  PubMed  Google Scholar 

  16. Han J, Chang J, Wei R et al (2018) Mechanistic investigation on tuning the conductivity type of cuprous oxide (Cu2O) thin films via deposition potential. Int J Hydrogen Energy 43(30):13764–13777

    Article  CAS  Google Scholar 

  17. Miao X, Wang S, Sun W et al (2019) Room-temperature electrochemical deposition of ultrathin CuOx film as hole transport layer for perovskite solar cells. Scripta Mater 165:134–139

    Article  CAS  Google Scholar 

  18. Yu X, Tang X, Li J et al (2017) Nucleation mechanism and optoelectronic properties of Cu2O onto ITO Electrode in the electrochemical deposition process. J Electrochem Soc 164(14):D999–D1005

    Article  CAS  Google Scholar 

  19. Herbadji A, Bouderbala IY, Mentar L et al (2020) Effect of copper sulfate concentration on the electrochemical nucleation process, growth and properties of n-Type Cu2O Thin Films. Russ J Electrochem 55(12):1336–1349

    Article  Google Scholar 

  20. Mech K, Bisztyga-Szklarz M, Szaciłowski K (2020) Brief insights into Cu2O electrodeposition: Detailed progressive voltammetric and electrogravimetric Analysis of a Copper Lactate System. J Electrochem Soc 167(4)

  21. Ait Himi M, El Ghachtouli S, Youbi B et al (2020) Nucleation and growth mechanism of manganese oxide electrodeposited on ITO substrate. Materials Today: Proceedings 30:963–969

    CAS  Google Scholar 

  22. Nath P, Pandey R, Das A et al (2017) Effect of deposition potential and copper concentration on the phase transformation mechanism and structural distribution during electrodeposition of Ni-Cu magnetic alloy thin films. Metallic Materials Kovove Mater 55(4):255–265

    Article  CAS  Google Scholar 

  23. Achilli E, Vertova A, Visibile A et al (2017) Structure and stability of a copper(II) Lactate Complex in alkaline solution: a Case study by energy-dispersive x-ray absorption spectroscopy. Inorg Chem 56(12):6982–6989

    Article  CAS  PubMed  Google Scholar 

  24. Chen T, Kitada A, Fukami K et al (2019) Determination of stability constants of copper(II)–lactate complexes in Cu2O electrodeposition baths by UV-vis absorption spectra factor analysis. J Electrochem Soc 166(15):D761–D767

    Article  CAS  Google Scholar 

  25. Chen T, Kitada A, Seki Y et al (2018) Identification of copper(II)–lactate complexes in Cu2O electrodeposition baths: deprotonation of the α-hydroxyl group in highly concentrated alkaline solution. J Electrochem Soc 165(10):D444–D451

    Article  CAS  Google Scholar 

  26. Luo Z, Su Y, Yue S et al (2021) Electrodeposition of copper nanopowder with controllable morphology: influence of pH on the nucleation/growth mechanism. J Solid State Electrochem 25(5):1611–1621

    Article  CAS  Google Scholar 

  27. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889

    Article  CAS  Google Scholar 

  28. Hills G, Scharifker B, Montenegro I et al (1982) Electrochemical nucleation: Part I. General considerations. Electroanal Chem Interfac Electrochem 138(2):225–239

  29. Bahar J, Lghazi Y, Youbi B et al (2022) Nucleation and growth mechanism of cuprous oxide electrodeposited on ITO substrate. Materials Today: Proceedings

  30. Tarallo LHA (1999) Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth. J Electroanal Chem 470(1):70–76

    Article  Google Scholar 

  31. Zhang J, An M, Chen Q et al (2016) Electrochemical study of the diffusion and nucleation of gallium(III) in [Bmim][TfO] ionic liquid. Electrochim Acta 190:1066–1077

    Article  CAS  Google Scholar 

  32. Wadhene R, Assaker IB, Chtourou R (2018) Effect of sulfur quantity in post-treatment on physicals and electrical properties of electrodeposited Kesterite Cu2ZnSnS4 thin films. J Mater Sci: Mater Electron 29(20):17374–17387

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 52174354).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shina Li or Ruixin Ma.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, C., Li, S., Shi, Z. et al. Effect of pH on the electrodeposition nucleation and growth mechanism of cuprous oxide. J Solid State Electrochem 27, 1085–1093 (2023). https://doi.org/10.1007/s10008-023-05408-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05408-x

Keywords

Navigation