Skip to main content
Log in

Early antitermination in the atypical coliphage mEp021 mediated by the Gp17 protein

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The coliphage mEp021 belongs to a phage group with a unique immunity repressor, and its life cycle requires the host factor Nus. mEp021 has been classified as non-lambdoid based on its specific characteristics. The mEp021 genome carries a gene encoding an Nλ-like antiterminator protein, termed Gp17, and three nut sites (nutL, nutR1, and nutR2). Analysis of plasmid constructs containing these nut sites, a transcription terminator, and a GFP reporter gene showed high levels of fluorescence when Gp17 was expressed, but not in its absence. Like lambdoid N proteins, Gp17 has an arginine-rich motif (ARM), and mutations in its arginine codons inhibit its function. In infection assays using the mutant phage mEp021ΔGp17::Kan (where gp17 has been deleted), gene transcripts located downstream of transcription terminators were obtained only when Gp17 was expressed. In contrast to phage lambda, mEp021 virus particle production was partially restored (>1/3 relative to wild type) when nus mutants (nusA1, nusB5, nusC60, and nusE71) were infected with mEp021 and Gp17 was overexpressed. Our results suggest that RNA polymerase reads through the third nut site (nutR2), which is more than 7.9 kbp downstream of nutR1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Das A et al (2003) Genetic and biochemical strategies to elucidate the architecture and targets of a processive transcription antiterminator from bacteriophage lambda. Methods Enzymol 371:438–459

    Article  CAS  PubMed  Google Scholar 

  2. Lazinski D, Grzadzielska E, Das A (1989) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59(1):207–218

    Article  CAS  PubMed  Google Scholar 

  3. Said N et al (2017) Structural basis for lambdaN-dependent processive transcription antitermination. Nat Microbiol 2:17062

    Article  CAS  PubMed  Google Scholar 

  4. Stagno JR et al (2011) Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination. Nucleic Acids Res 39(17):7803–7815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li J, Mason SW, Greenblatt J (1993) Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription. Genes Dev 7(1):161–172

    Article  CAS  PubMed  Google Scholar 

  6. Campbell A (1994) Comparative molecular biology of lambdoid phages. Annu Rev Microbiol 48:193–222

    Article  CAS  PubMed  Google Scholar 

  7. Banik-Maiti S, King RA, Weisberg RA (1997) The antiterminator RNA of phage HK022. J Mol Biol 272(5):677–687

    Article  CAS  PubMed  Google Scholar 

  8. Hernandez-Sanchez J et al (2008) Analysis of some phenotypic traits of feces-borne temperate lambdoid bacteriophages from different immunity groups: a high incidence of cor+ FhuA-dependent phages. Arch Virol 153(7):1271–1280

    Article  CAS  PubMed  Google Scholar 

  9. Neely MN, Friedman DI (1998) Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol 28(6):1255–1267

    Article  CAS  PubMed  Google Scholar 

  10. Neely MN, Friedman DI (2000) N-mediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors. Mol Microbiol 38(5):1074–1085

    Article  CAS  PubMed  Google Scholar 

  11. Ravin NV, Rech J, Lane D (2008) Extended function of plasmid partition genes: the Sop system of linear phage-plasmid N15 facilitates late gene expression. J Bacteriol 190(10):3538–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hershko-Shalev T et al (2016) Gifsy-1 prophage IsrK with dual function as small and messenger RNA modulates vital bacterial machineries. PLoS Genet 12(4):e1005975

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kameyama L et al (1999) Characterization of wild lambdoid bacteriophages: detection of a wide distribution of phage immunity groups and identification of a nus-dependent, nonlambdoid phage group. Virology 263(1):100–111

    Article  CAS  PubMed  Google Scholar 

  14. Kameyama L, Fernandez L, Bermudez RM, Garcia-Mena J, Ishida C, Guarneros G (2001) Properties of a new coliphage group from human intestinal flora. Recent Res Dev Virol 3:297–303

    CAS  Google Scholar 

  15. Madeira F et al (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res

  16. Friedman DI et al (1990) Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal. Genes Dev 4(12A):2210–2222

    Article  CAS  PubMed  Google Scholar 

  17. Su L et al (1997) RNA recognition by a bent alpha-helix regulates transcriptional antitermination in phage lambda. Biochemistry 36(42):12722–12732

    Article  CAS  PubMed  Google Scholar 

  18. Guzman LM et al (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14):4121–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scharpf M et al (2000) Antitermination in bacteriophage lambda. The structure of the N36 peptide-boxB RNA complex. Eur J Biochem 267(8):2397–2408

    Article  CAS  PubMed  Google Scholar 

  20. DeVito J, Das A (1994) Control of transcription processivity in phage lambda: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator. Proc Natl Acad Sci U S A 91(18):8660–8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roberts JW (1969) Termination factor for RNA synthesis. Nature 224(5225):1168–1174

    Article  CAS  PubMed  Google Scholar 

  22. Rees WA et al (1996) Bacteriophage lambda N protein alone can induce transcription antitermination in vitro. Proc Natl Acad Sci U S A 93(1):342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cocozaki AI, Ghattas IR, Smith CA (2008) Bacteriophage P22 antitermination boxB sequence requirements are complex and overlap with those of lambda. J Bacteriol 190(12):4263–4271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guarneros G et al (1982) Posttranscriptional control of bacteriophage lambda gene expression from a site distal to the gene. Proc Natl Acad Sci U S A 79(2):238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kameyama L et al (1991) RNaselll activation of bacteriophage lambda N synthesis. Mol Microbiol 5(12):2953–2963

    Article  CAS  PubMed  Google Scholar 

  26. Legault P et al (1998) NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell 93(2):289–299

    Article  CAS  PubMed  Google Scholar 

  27. Furusawa H, Fukusho S, Okahata Y (2014) Arginine arrangement of bacteriophage lambda N-peptide plays a role as a core motif in GNRA tetraloop RNA binding. ChemBioChem 15(6):865–871

    Article  CAS  PubMed  Google Scholar 

  28. Cocozaki AI, Ghattas IR, Smith CA (2008) The RNA-binding domain of bacteriophage P22 N protein is highly mutable, and a single mutation relaxes specificity toward lambda. J Bacteriol 190(23):7699–7708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai Z et al (1998) Solution structure of P22 transcriptional antitermination N peptide-boxB RNA complex. Nat Struct Biol 5(3):203–212

    Article  CAS  PubMed  Google Scholar 

  30. Franklin NC (1993) Clustered arginine residues of bacteriophage lambda N protein are essential to antitermination of transcription, but their locale cannot compensate for boxB loop defects. J Mol Biol 231(2):343–360

    Article  CAS  PubMed  Google Scholar 

  31. Cilley CD, Williamson JR (2003) Structural mimicry in the phage phi21 N peptide-boxB RNA complex. RNA 9(6):663–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kroger M, Hobom G (1982) A chain of interlinked genes in the ninR region of bacteriophage lambda. Gene 20(1):25–38

    Article  CAS  PubMed  Google Scholar 

  33. Court D, Sato K (1969) Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology 39(2):348–352

    Article  CAS  PubMed  Google Scholar 

  34. Silhavy T, Enquist L (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  35. Altschul SF et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  36. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3(3):266–272

    Article  CAS  PubMed  Google Scholar 

  38. Madden TL, Tatusov RL, Zhang J (1996) Applications of network BLAST server. Methods Enzymol 266:131–141

    Article  CAS  PubMed  Google Scholar 

  39. Quevillon E et al (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klucar L, Stano M, Hajduk M (2010) phiSITE: database of gene regulation in bacteriophages. Nucleic Acids Res 38:366–370

    Article  Google Scholar 

  41. Gautheret D, Lambert A (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 313(5):1003–1011

    Article  CAS  PubMed  Google Scholar 

  42. Hofacker IL et al (1994) Fast folding and comparison of rna secondary structures. Monatshefte Fur Chemie 125(2):167–188

    Article  CAS  Google Scholar 

  43. Lesnik EA et al (2001) Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res 29(17):3583–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Macke TJ et al (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29(22):4724–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  48. Strauch MA et al (1989) The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J 8(5):1615–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Friedman DI et al (1981) Evidence that ribosomal protein S10 participates in control of transcription termination. Proc Natl Acad Sci U S A 78(2):1115–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ward DF, DeLong A, Gottesman ME (1983) Escherichia coli nusB mutations that suppress nusA1 exhibit lambda N specificity. J Mol Biol 168(1):73–85

    Article  CAS  PubMed  Google Scholar 

  51. Patterson TA et al (1994) Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination. J Mol Biol 236(1):217–228

    Article  CAS  PubMed  Google Scholar 

  52. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mogridge J, Mah TF, Greenblatt J (1995) A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. Genes Dev 9(22):2831–2845

    Article  CAS  PubMed  Google Scholar 

  54. Chattopadhyay S et al (1995) Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda. Proc Natl Acad Sci U S A 92(9):4061–4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deatherage CL, Hadziselimovic A, Sanders CR (2012) Purification and characterization of the human gamma-secretase activating protein. Biochemistry 51(25):5153–5159

    Article  CAS  PubMed  Google Scholar 

  56. Greiner S, Lehwark P, Bock R (2019) OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47(W1):W59–W64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciate the valuable, sharp, careful comments and observations by the anonymous reviewers. Also, we thank Dr. Jaime Ortega and Dr. Norma Oviedo for their invaluable comments throughout this study. We are grateful to M.Sc. Ma. Guadalupe Aguilar-Gonzalez and Dr. Dulce Maria del Carmen Delgadillo Alvarez from LaNse-Cinvestav for technical assistance in DNA sequencing. We also thank M.Sc. Jose Bueno-Martinez and M.Sc. Carlos Osorio for helpful technical assistance, and M.Sc. Jairo Hurtado-Cortes and Dr. Victor Flores for bioinformatic assistance. During this work, G.V.T. and E.P.B.T. were granted doctoral fellowships from CONACyT, Mexico (No. 627423) and (No. 535549), respectively.

Funding

CINVESTAV supported this work.

Author information

Authors and Affiliations

Authors

Contributions

GV-T did experimental and analysis work, wrote the first manuscript draft, and conceptualized the work. Supporting experimental work was performed by EPB-T. EM-P did genome sequence assembly. Manuscript editing, corrections, suggestions, and comments were made by RMB-C. Supervision, suggestions, comments, and advice were given by GG. LK contributed to conceptualization, management, direction, and manuscript writing. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Luis Kameyama.

Ethics declarations

Conflict of interest

The authors have no financial interests to disclose.

Ethical approval

This article does not include any studies with animals or human participants performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2484 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia-Toxqui, G., Ballinas-Turrén, E.P., Bermúdez-Cruz, R.M. et al. Early antitermination in the atypical coliphage mEp021 mediated by the Gp17 protein. Arch Virol 168, 92 (2023). https://doi.org/10.1007/s00705-023-05721-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05721-w

Navigation