Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of P22 transcriptional antitermination N peptide–box B RNA complex

Abstract

We have determined the solution structure of a 15-mer boxB RNA hairpin complexed with a 20-mer basic peptide of the N protein involved in bacteriophage P22 transcriptional antitermination. Complex formation involves adaptive binding with the N peptide adopting a bent α-helical conformation that packs tightly through hydrophobic and electrostatic interactions against the major groove face of the boxB RNA hairpin, orienting the open opposite face for potential interactions with host factors and/or RNA polymerase. Four nucleotides in the boxB RNA hairpin pentaloop form a stable GNRA like tetraloop structural scaffold on complex formation, allowing the looped out fifth nucleotide to make extensive hydrophobic contacts with the bound peptide. The guanidinium group of a key arginine is hydrogen-bonded to the guanine in a loop-closing sheared G·A mismatch and to adjacent backbone phosphates. The identified intermolecular contacts account for the consequences of N peptide and boxB RNA mutations on bacteriophage transcriptional antitermination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Greenblatt, J., Nodwell, J. R. & Mason, S. W. Transcriptional antitermination. Nature 364, 401–406 (1993).

    Article  CAS  Google Scholar 

  2. Das, A. Control of transcription termination by RNA-binding proteins. Annu. rev. Biochem. 62, 893–930 (1993).

    Article  CAS  Google Scholar 

  3. Friedman, D. I. & Court, D. L. Transcriptional antitermination: the λ paradigm updated. Mol. Microbiol. 18, 191–200 (1995).

    Article  CAS  Google Scholar 

  4. Chattopadhyay, S., Garcia-Mena, J., DeVito, J., Wolska, K. & Das, A. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage λ. Proc. Natl. Acad. Sci. USA 92, 4061–4065 (1995).

    Article  CAS  Google Scholar 

  5. Lazinski, D., Grzadzielska, E. & Das, A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59, 207–218 (1989).

    Article  CAS  Google Scholar 

  6. Van Gilst, M. R. & von Hippel, P. H. Assembly of the N-dependent antitermination complex of phage λ: NusA and RNA bind independently to different unfolded domains of the N protein. J. Mol. Biol. 274, 160–173 (1997).

    Article  CAS  Google Scholar 

  7. Tan, R. & Frankel, A. D. Structural variety of arginine-rich RNA-binding peptides. Proc. Natl. Acad. Sci. USA 92, 5282–5286 (1995).

    Article  CAS  Google Scholar 

  8. Cilley, C. D. & Williamson, J. R. Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE). RNA 3, 57–67 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brünger, A.T. A system for X-ray crystallogrphy and NMR (Yale University Press, New Haven,-Connecticut, 1992).

    Google Scholar 

  10. Jucker, F. M., Heus, H. A., Yip, P. F., Moors, E. H. & Pardi, A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 264, 968–980 (1996).

    Article  CAS  Google Scholar 

  11. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  12. Pley, H., Flaherty, K. & McKay, D. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111–113 (1994).

    Article  CAS  Google Scholar 

  13. Saenger, W. Principles of nucleic acid structure. In Springer Advanced Texts in Chemistry (ed. Cantor, C. R.) 118 (Springer-Verlag, New York; 1984).

    Google Scholar 

  14. Calnan, B. J., Tidor, B., Biancalana, S., Hudson, D. & Frankel, A. D. Arginine-mediated RNA recognition: the arginine fork. Science 252, 1167–1171 (1991).

    Article  CAS  Google Scholar 

  15. Puglisi, J. D., Tan, R., Calnan, B. J., Frankel, A. D. & Williamson, J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257, 76–80 (1992).

    Article  CAS  Google Scholar 

  16. Franklin, N. C. Clustered arginine residues of bacteriophage λ N protein are essential to antitermination of transcription, but their locale cannot compensate for boxB loop defects. J. Mol. Biol. 231, 343–360 (1993).

    Article  CAS  Google Scholar 

  17. Su, L. et al. RNA recognition by a bent α-helix regulates transcriptional antitermination in phage λ. Biochemistry 36, 12722–12732 (1997).

    Article  CAS  Google Scholar 

  18. Su, L. et al. An RNA enhancer in a phage transcriptional antitermination complex functions as a structural switch. Genes Dev. 11, 2214–2226 (1997).

    Article  CAS  Google Scholar 

  19. Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721 (1997).

    Article  CAS  Google Scholar 

  20. Puglisi, J. D., Chen, L., Blanchard, S. & Frankel, A. D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science 270, 1200–1203 (1995).

    Article  CAS  Google Scholar 

  21. Ye, X., Kumar, R. A. & Patel, D. J. Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. Chem. Biol. 2, 827–840 (1995).

    Article  CAS  Google Scholar 

  22. Battiste, J. L. et al. α helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science 273, 1547–1551 (1996).

    Article  CAS  Google Scholar 

  23. Ye, X., Gorin, A., Ellington, A. D. & Patel, D. J. Deep penetration of an α-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Nature Struct. Biol. 3, 1026–1033 (1996).

    Article  CAS  Google Scholar 

  24. Rould, M. A., Perona, J. J. & Steitz, T. A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352, 213–218 (1991).

    Article  CAS  Google Scholar 

  25. Oubridge, C., Ito, N., Evans, P. R., Teo, C. H. & Nagai, K. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  CAS  Google Scholar 

  26. Convery, M. A. et al. Crystal structure of an RNA aptamer-protein complex at 2.8 Å resolution. Nature Struct. Biol. 5, 133–139 (1998).

    Article  CAS  Google Scholar 

  27. Allain, F. H. et al. Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation. Nature 380, 646–650 (1996).

    Article  CAS  Google Scholar 

  28. De Guzman, R. N. et al. Structure of the HIV-1 nucleocapsid protein bound to the SL3 stem-loop recognition element of the genomic ψ-RNA packaging signal. Science, 279, 384–388 (1998).

    Article  CAS  Google Scholar 

  29. Schumacher, T. N. et al. Identification of D-peptide ligands through mirror-image phage display. Science 271, 1854–1857 (1996).

    Article  CAS  Google Scholar 

  30. Milligan, J. F., Groebe, D. R., Witherell, G. W. & Uhlenbeck, O. C. Oligoribonucleotide synthesis using T7. RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  31. Nikonowicz, E. P. et al. Preparation of 13C and 15N labeled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 20, 4507–4513 (1992).

    Article  CAS  Google Scholar 

  32. Batey, R. T., Inada, M., Kujawinski, E., Puglisi, J. D. & Williamson, J. R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 20, 4515–4523 (1992).

    Article  CAS  Google Scholar 

  33. Deleglio, F., Grzesiek, S., Vuister, G., Zu, G., Pfeiffer, J. & Bax, A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Google Scholar 

  34. Pardi, A. Multidimensional heteronuclear NMR experiments for structure determination of isotopically labeled RNA. Meths Enz. 261, 350–380 (1995).

    Article  CAS  Google Scholar 

  35. Varani, G., Aboul-ela, F. & Allain, F. H. T. NMR investigation of RNA structure. Prog. NMR Spect. 29, 51–127 (1996).

    Article  CAS  Google Scholar 

  36. Clore, G. M. & Gronenborn, A. M. Applications of three- and four-dimensional heteronuclear NMR spectroscopy to protein structure determination. Prog. NMR Spect. 23, 43–92 (1991).

    Article  CAS  Google Scholar 

  37. Kay, L. E. Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog. NMR Spect. 63, 277–299 (1995).

    CAS  Google Scholar 

  38. Rao, N. S. et al. NMR pulse schemes for the sequential assignment of arginine side-chain Hε protons. J. Magn. Reson. 113, 272–276 (1996).

    Article  CAS  Google Scholar 

  39. Vuister, G. W. & Bax, A. Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNHα) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  40. Nicholls, A., Sharp, K. A. & Honig, B. H. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinshaw J. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Z., Gorin, A., Frederick, R. et al. Solution structure of P22 transcriptional antitermination N peptide–box B RNA complex. Nat Struct Mol Biol 5, 203–212 (1998). https://doi.org/10.1038/nsb0398-203

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0398-203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing