Skip to main content
Log in

Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The external and internal morphologies of cidaroid and camarodont sea urchin primary spines are investigated giving an overview of the internal microstructure and structural properties. The investigated species comprise the cidaroids Eucidaris metularia, Phyllacanthus imperialis, Plococidaris verticillata and Prionocidaris baculosa as well as the camarodont Heterocentrotus mammillatus (Echinodermata: Class Echinoidea), and morphological descriptions are based on scanning electron microscopy and micro-computed tomography. Stereom types and densities are differentiated using pore and trabecular diameter measurements. Structural analysis was performed using three point bending tests resulting in the calculation of force, deflection and stress, strain relationships. All studied species possess primary spines with a medulla consisting of laminar stereom regardless of the age and position of the spine on the tests. Differences in stereom morphology occur in the radiating layer and the surface of the spines. Material densities and stereom types differ with respect to growth lines when present and the radiating layer. The primary spines also show large differences in their outer morphologies ranging from smooth, striated to tuberculate. H. mammillatus spines are shown to bear more stress resistance than those of the cidaroids. Differences in spine morphologies and reaction to stress are interpreted with respect to functional morphological response, to ambient environmental parameters and their strategies between and within evolutionary stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baumeister J (1999) Vergleich der Funktionsmorphologie und Paläoökologie zweier Rhabdocidariden (Echinodermata: Cidaridae). Paläontologische Zeitschrift 73(3):319–326

    Article  Google Scholar 

  • Baumeister JG, Leinfelder RR (1998) Constructional morphology of three Upper Jurassic echinoids. Palaeontology 41:203–219

    Google Scholar 

  • Burkhardt A, Hansmann W, Märkel K, Niemann HJ (1983) Mechanical design in spines of diadematoid echinoids (Echinodermata, Echinoidea). Zoomorphology 102:189–203

    Article  Google Scholar 

  • Cavey MJ, Märkel K (1994) Echinodermata. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol 14. Wiley-Liss, New York

    Google Scholar 

  • Coppard SE, Campbell AC (2004) Taxonomic significance of spine morphology in the echinoid genera Diadema and Echinothrix. Invertebr Biol 123(4):357–371

    Article  Google Scholar 

  • Currey JD (1975) A comparson of the strength of echinoderm spines and mollusc shells. J Mar Biol Assoc UK 55:419–424

    Article  Google Scholar 

  • David B, Stock SR, De Carlo F, Hétérier V, De Ridder C (2009) Microstructures of Antarctic cidaroid spines: diversity of shapes and ectosymbiont attachments. Mar Biol 156:1559–1572

    Article  Google Scholar 

  • Dotan A (1990a) Distribution of regular sea urchins on coral reefs near the south-eastern tip of the Sinai peninsula, Red Sea. Israel J Zool 37:15–29

    Google Scholar 

  • Dotan A (1990b) Population structure of the echinoid Heterocentrotus mammillatus (L.) along the littoralzone of south-eastern Sinai. Coral Reefs 9:75–80

    Article  Google Scholar 

  • Dotan A, Fishelson L (1985) Morphology of spines of Heterocentrotus mammillatus (Echinodermata: Echinoidae) and its ecological significance. In: Keegan BF, O`Connor BDS (eds) Echinodermata: Proceedings of the international echinoderm conference, Galway 24–29 Sept 1984. A.A. Balkema, Rotterdam, pp 253–260

  • Ebert TA (1985) The non-periodic nature of growth rings in echinoid spines. In: Keegan BF, O`Connor BDS (eds) Echinodermata: Proceedings of the international echinoderm conference, Galway 24–29 Sept 1984. A.A. Balkema, Rotterdam, pp 261–267

  • Emlet R (1982) Echinoderm calcite: a mechanical analysis from larval spicules. Biol Bull 163:264–275

    Article  Google Scholar 

  • Estes JE, Smith NS, Palmisano JF (1978) Sea otter predation and community organization in the western aleutian islands, Alaska. Ecology 59(4):822–833

    Article  Google Scholar 

  • Grossmann JN (2010) Stereom differentiation in sea urchin spines under special consideration as a model for a new impact protective system. PhD thesis, University of Tübingen, Tübingen, Germany

  • Grossmann JN, Nebelsick JH (2013) Stereom differentiation in spines of Plococidaris verticillata, Heterocentrotus mammillatus and other regular sea urchins. In: Johnson C (ed) Echinoderms in a changing world: proceedings of the 13th international echinoderm conference, 5–9 Jan 2009, University of Tasmania, Hobart Tasmania, Australia. CRC Press, pp 97–104

  • Hasenpusch W (2000) Die Stachel der Griffelseeigel. Mikrokosmos 89(1):23–27

    Google Scholar 

  • Hidaka M, Takahashi K (1983) Fine structure and mechanical properties of the catch apparatus of the sea-urchin spine, a collagenous connective tissue with muscle-like holding capacity. J Exp Biol 103(1):1–14

    Google Scholar 

  • Hiratzka LF, Goeken JA, White RA, Whright CB (1979) In vivo comparison of replamineform, silastic and bioelectric polyurethane arterial grafts. Arch Surg 114(6):698–702

    Article  PubMed  CAS  Google Scholar 

  • Hughes RN, Hughes HPI (1971) A study of the gastropod Cassis tuberosa (L.) preying upon sea urchins. J Exp Mar Biol Ecol 7(3):305–314

    Article  Google Scholar 

  • Kowalewski M, Nebelsick JH (2003) Predation on recent and fossil echinoids. Predator–prey interactions in the fossil record: topics in geobiology series, vol 20. Plenum Press/Kluwer, New York

  • Kroh A, Nebelsick JH (2010) Echinoderms and Oligo-Miocene carbonate systems: potential applications in sedimentology and environmental reconstruction. Int Assoc Sedimentol Spec Publ 42:201–228

    Google Scholar 

  • Kroh A, Smith AB (2010) The phylogeny and classification of post-Palaeozoic echinoids. J Syst Palaeontol 8(2):147–212

    Article  Google Scholar 

  • Kurz RC (1995) Predator–prey interactions between gray triggerfish (Balistes capriscus Gmelin) and a guild of sand dollars around artificial reefs in the Northeastern Gulf of Mexico. Bull Mar Sci 56:150–160

    Google Scholar 

  • Lai M, Kulak AN, Law D, Zhang Z, Meldrum FC, Riley DJ (2007) Profiting from nature: macroporous copper with superior mechanical properties. Chem Commun 34:3547–3549

    Article  Google Scholar 

  • Märkel K, Röser U (1983) Calcite-resorption in the spine of the echinoid Eucidaris tribuloides. Zoomorphology 103:43–58

    Article  Google Scholar 

  • Meldrum F (2007) Bio-casting: biomineralized skeletons as templates for macroporous structures. In: Behrens P, Bäuerlein E (eds) Handbook of biomineralization. Wiley-VCH, Weinheim, pp 289–309

    Chapter  Google Scholar 

  • Moureaux C, Pérez-Huerta A, Compère P, Zhu W, Leloup T, Cusack M, Dubois P (2010) Structure, composition and mechanical relations to function in sea urchin spine. J Struct Biol 170(1):41–49

    Article  PubMed  CAS  Google Scholar 

  • Nebelsick JH (1992a) Echinoid distribution by fragment identification in the Northern Bay of Safaga, Red Sea. Palaios 7(3):316–328

    Article  Google Scholar 

  • Nebelsick JH (1992b) The Northern Bay of Safaga (Red Sea, Egypt): an actuopalaeontological approach. III. Distribution of echinoids. Beitr Paläontol Österr 17:5–79

    Google Scholar 

  • Nebelsick JH (1996) Biodiversity of shallow-water Red Sea echinoids: implications for the fossil record. J Mar Biol Assoc U K 76(1):185–194

    Article  Google Scholar 

  • Nickel KG, Presser V, Schultheiß S, Berthold C, Kohler C, Nebelsick JH, Grossmann N, Stegmaier T, Finckh H, Vohrer A (2008) Seeigelstachel als Modell für stoffdurchlässige Einschlagschutzsysteme. In: Kesel AB, Zehren D (eds) Bionik: Patente aus der Natur, Bremen. GTBB, pp 29–39

  • Oaki Y, Imai H (2005) Hierarchically organized superstructure emerging from the exquisite association of inorganic crystals, organic polymers, and dyes: a model approach towards suprabiomineral materials. Adv Funct Mater 75:1407–1414

    Article  Google Scholar 

  • Oaki Y, Imai H (2006) Nanoengineering in echinoderms: the emergence of morphology from nanobricks. Small 2(1):66–70

    Article  PubMed  CAS  Google Scholar 

  • Presser V, Kohler C, Zivcová Z, Berthold C, Nickel KG, Schultheiß S, Gregorová E, Pabst W (2009) Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part II. Mechanical behavior of sea urchin spine inspired porous aluminum oxide ceramics under compression. J Bionic Eng 6(4):357–364

    Article  Google Scholar 

  • Presser V, Schultheiß S, Kohler C, Berthold C, Nickel KG, Vohrer A, Finckh H, Stegmaier T (2011) Lessons from nature for the construction of ceramic cellular materials for superior energy absorption. Adv Eng Mater 13(11):1042–1049

    Article  CAS  Google Scholar 

  • Régis MB, Thomassin BA (1983) Anomalies de structure des radioles de Heterocentrotus mammillatus (Echinodermata: Echinoidea) en microcosme in vitro. Mar Biol 75:89–98

    Article  Google Scholar 

  • Reilly GC, Currey JD (1999) The development of microcracking and failure in bone depends on the loading mode to which it is adapted. J Exp Biol 202:543–552

    PubMed  CAS  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Echinodermata. Invertebrate zoology. Brooks/Cole, Belmont

    Google Scholar 

  • Sala E, Zabala M (1996) Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Mar Ecol Prog Ser 140:71–81

    Article  Google Scholar 

  • Schwickerath H, Mokbel MA (1983) Grundlagen zur Prüfung des Verbundes Metall-Keramik. Dtsch Zahnarztl Z 38:949–952

    Google Scholar 

  • Smith AB (1980) Stereom microstructure of the echinoid test. Spec Pap Palaeontol 25:1–83

    Google Scholar 

  • Smith AB (1990) Biomineralization in echinoderms. In: Carter JG (ed) Skeletal biomineralization: patterns, process and evolutionary trends vol I. Van Nostrand Rheinhold, New York, pp 413–443

    Google Scholar 

  • Smith DS, del Castillo J, Morales M, Luke B (1990) The attachment of collagenous ligament to stereom in primary spines of the sea-urchin Eucidaris tribuloides. Tissue Cell 22(2):157–176

    Article  PubMed  CAS  Google Scholar 

  • Smith AB, Pisani D, Mackenzie-Dodds JA, Stockley B, Webster BL, Littlewood DTJ (2006) Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol 23(10):1832–1851

    Article  PubMed  CAS  Google Scholar 

  • Stiller F (2001) Echinoid spines from the Anisian (Middle Triassic) of Qingyan, south-western China. Palaeontology 44(3):529–551

    Article  Google Scholar 

  • Strathmann RR (1981) The role of spines in preventing structural damage to echinoid tests. Paleobiology 7(3):400–406

    Google Scholar 

  • Takemae N, Motokawa T (2005) Mechanical properties of the isolated catch apparatus of the sea urchin spine joint: muscle fibers do not contribute to passive stiffness changes. Biol Bull 208:29–35

    Article  PubMed  Google Scholar 

  • Tsafnat N, Fitz Gerald JD, Le HN, Stachurski ZH (2012) Micromechanics of sea urchin spines. PLoS ONE 7(9):e44140

    Article  PubMed  CAS  Google Scholar 

  • Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW (2007) Conversion of sea urchin spines to Mg-substituted tricalcium phosphate for bone impants. Acta Biomater 3:785–793

    Article  PubMed  CAS  Google Scholar 

  • Verling E, Barnes DKA, Crook AC (2005) Smashing tests? Patterns and mechanisms of adult mortality in a declining echinoid population. Mar Biol 147:509–515

    Article  Google Scholar 

  • Wagner HD, Weiner S (1992) On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech 25(11):1311–1320

    Article  PubMed  CAS  Google Scholar 

  • Weber JN, Greer R, Voight B, White E, Roy R (1969) Unusual strength properties of echinoderm calcite related structure. J Ultrastruct Res 26:355–366

    Article  PubMed  CAS  Google Scholar 

  • Weber JN, White EW, Lebiedzik J (1971) New porous biomaterials by replication of echinoderm skeletal microstructures. Nature 233:337–339

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was part of a dissertation in the interdisciplinary project “New materials for light, permeable impact protective systems: sea urchins as a model” funded by the “Stiftung Baden-Württemberg”. Special thanks go to Hartmut Schulz and Peter Fittkau for helping with the SEM, to Sebastian Schmelzle for managing the 3D images and to Hema-CT for the CT-images and Wolfgang Gerber for total spine images. Achim Vohrer is thanked for the lively discussion during bending tests at the ITV Denkendorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nils Grossmann.

Additional information

Communicated by A. Schmidt-Rhaesa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary 1: Mathematical equations and formulae for the bending tests (XLSX 24 kb)

435_2013_192_MOESM2_ESM.tif

Supplementary 2 Plococidaris verticillata spine: a) medulla and radiating layer at the base; b) laminar medulla, galleried radiating layer and cortex in detail; c) medulla in the shaft; d) tip of a spine including medulla, radiating layer and cortex; e) galleried radiating layer of a whorl; f) whorl in detail, including radiating layer and cortex. The galleries are inclined with reference to the medulla at ca. 45° from central long axis of the spine. The thickness of the cortex ranges from ca. 80 µm at the base, 60 to 70 µm at the flanks, to ca. 80 µm at the tip (scale bars = 100 µm except for e = 50 µm) (after Grossmann and Nebelsick 2013) (TIFF 16602 kb)

435_2013_192_MOESM3_ESM.tif

Supplementary 3 Eucidaris metularia spine in longitudinal direction: a) medulla (middle), radiating layer and cortex near the milled ring; b) galleried radiating layer; c) the shaft; d); microperforated cortex; e) radiating layer and cortex; f) medulla in the upper spine part. The cortex thickness has a mean value of around 150 µm (Fig. 5C and E). From the base to the tip it thickens from around 128 µm to 152 µm (scale bars = 100 µm, except for d = 10 µm) (TIFF 16342 kb)

435_2013_192_MOESM4_ESM.docx

Supplementary 4 Larger aboral spines of Phyllacanthus imperialis: Medulla: Box-plot and histogram (a and b) of the pore diameter and (c and d) the trabeculae diameter; Radiating layer: Box-plot and histogram (e and f) of the pore diameter and (g and h) the trabeculae diameter. Box plots include median, minimum and maximum values of the investigated data and the outliers, as well as the area where 25 % and 75 % of the values are lying. The histogram includes the frequencies, and the distribution curve (dark line vertical to the x-axis), as well as the mean value. Spine images in the box plots show the approximate position of the investigated area (DOCX 332 kb)

435_2013_192_MOESM5_ESM.docx

Supplementary 5: Larger fully grown spines of Heterocentrotus mammillatus: Medulla: Box-plot and histogram (a and b) of the pore diameter and (c and d) the trabeculae diameter; Radiating layer: Box-plot and histogram (e and f) of the pore diameter and (g and h) the trabeculae diameter. Box plots include median, minimum and maximum values of the investigated data and the outliers, as well as the area where 25 % and 75 % of the values are lying. The histogram includes the frequencies, and the distribution curve value (dark line vertical to the x-axis) as well as the mean. Spine images in the box plots show the investigated area position approximately (DOCX 380 kb)

435_2013_192_MOESM6_ESM.tif

Supplementary 6 Oral spine of Heterocentrotus mammillatus in different views: two-dimensional longitudinal view (a) and cross-sections of the tip (b), middle shaft (c) and the base (d). The spine from the centre to the outside is separated into medulla, disrupting growth rings and the radiating layer. The outside of the spine is covered by an epidermis (scale bars = 5 mm) (TIFF 3427 kb)

435_2013_192_MOESM7_ESM.xlsx

Supplementary 7 a Force-deflection and b stress-strain diagram of juvenile Heterocentrotus mammillatus spines: The numbers in the legend are the spine samples. After the highest force loading the spines broke (XLSX 86 kb)

435_2013_192_MOESM8_ESM.xlsx

Supplementary 8 a Force-deflection and b stress-strain diagram of fully grown Heterocentrotus mammillatus spines: The numbers in the legend are the spine samples. After the highest force loading the spines broke. The values of the sample B9 are not shown due to structural failure after measurement start (XLSX 600 kb)

435_2013_192_MOESM9_ESM.xlsx

Supplementary 9 a Force-deflection and b stress-strain diagram of juvenile Phyllacanthus imperialis spines: The numbers in the legend are the spine samples. After the highest force loading the spines broke (XLSX 66 kb)

435_2013_192_MOESM10_ESM.xlsx

Supplementary 10 a Force-deflection and b stress-strain diagram of fully grown Phyllacanthus imperialis spines. The numbers in the legend are the spine samples. After the highest force loading the spines broke (XLSX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossmann, J.N., Nebelsick, J.H. Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines. Zoomorphology 132, 301–315 (2013). https://doi.org/10.1007/s00435-013-0192-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-013-0192-5

Keywords

Navigation