Skip to main content
Log in

Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part II. Mechanical Behavior of Sea Urchin Spine Inspired Porous Aluminum Oxide Ceramics under Compression

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Sea urchin spines were chosen as a model system for biomimetic ceramics obtained using starch-blended slip casting. Porous alumina ceramics with cap-shaped layers with different alternating porosities were found to have superior fracture behavior under bulk compression compared to ceramics with uniform porosity. They fail in a cascading manner, absorbing high amounts of energy during extended compression paths. The porosity variation in an otherwise single phase material mimicks the architectural microstructure design of sea urchin spines of Heterocentrotus mammillatus, which are promising model materials for impact protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber J N. Incorporation of magnesium into the skeletal calcites of echinoderms. American Journal of Science, 1969, 267, 537–566.

    Article  Google Scholar 

  2. Presser V, Schultheiß S, Berthold C, Nickel K G. Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. Journal of Bionic Engineering, 2009, 6, 203–213.

    Article  Google Scholar 

  3. Davis J B, Kristoffersson A, Carlström E, Clegg W J. Fabrication and crack deflection in ceramic laminates with porous interlayers. Journal of the American Ceramic Society, 2000, 83, 2369–2374.

    Article  Google Scholar 

  4. Tu W-C, Lange F F, Evans A G. Concept for a damage-tolerant ceramic composite with “strong” interfaces. Journal of the American Ceramic Society, 1996, 79, 417–424.

    Article  Google Scholar 

  5. Goller R, Kleer G, Kriegesmann J. Bruchmechanische Untersuchungen an laminiertem siliciuminfiltriertem Siliciumcarbid (SiSiC). Keramische Zeitschrift, 1994, 46, 156–158. (in Germany)

    Google Scholar 

  6. Yu Z B, Krstic V D. Fabrication and characterization of laminated SiC ceramics with self-sealed ring structure. Journal of Materials Science, 2003, 38, 4735–4738.

    Article  Google Scholar 

  7. Krstic Z, Krstic V D. Young’s modulus, density, and phase composition of pressureless sintered self-sealed Si3N4/BN laminated structures. Journal of the European Ceramic Society, 2008, 28, 1723–1730.

    Article  Google Scholar 

  8. Gregorova E, Zivcova Z, Pabst W. Porosity and pore space characteristics of starch-processed porous ceramics. Journal of Materials Science, 2006, 41, 6119–6122.

    Article  Google Scholar 

  9. Bargel H-J, Schulze G. Werkstoffkunde, Springer, Berlin, 2008. (in Germany)

    Book  Google Scholar 

  10. Delesse A. Procédé mècanique pout déterminer la composition des roches. Annales des Mines, 1848, 4, 379–388. (in French)

    Google Scholar 

  11. Rosiwal A K. Über geometrische Gesteinsanalysen. Ein einfacher Weg zur ziffernmäßigen Feststellung der Quantitätsverhältnisses der Mineralbestandteile gemengter Gesteine. Verhandlungen der Geologischen Reichsanstalt Wien, 1898, 15, 143–175. (in Germany)

    Google Scholar 

  12. Russ J C, Dehoff R T. Practical Stereology, Springer, New York, 2001.

    Google Scholar 

  13. Hampton J H D, Savage S B, Drew R A L. Experimental analysis and modeling of slip casting. Journal of the American Ceramic Society, 1988, 71, 1040–1045.

    Article  Google Scholar 

  14. Gregorová E, Pabst W, Bohacenko I. Characterization of different starch types for their application in ceramic processing. Journal of the European Ceramic Society, 2006, 26, 1301–1309.

    Article  Google Scholar 

  15. Nanjangud S C, Brezny R, Green D J. Strength and Young’s modulus behavior of a partially sintered porous alumina. Journal of the American Ceramic Society, 1995, 78, 266–268.

    Article  Google Scholar 

  16. Ham-Su R, Wilkinson D S. Strength of tape cast and laminated ceramics. Journal of the American Ceramic Society, 1995, 78, 1580–1584.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Presser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presser, V., Kohler, C., Živcová, Z. et al. Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part II. Mechanical Behavior of Sea Urchin Spine Inspired Porous Aluminum Oxide Ceramics under Compression. J Bionic Eng 6, 357–364 (2009). https://doi.org/10.1016/S1672-6529(08)60143-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(08)60143-2

Keywords

Navigation