Skip to main content

Advertisement

Log in

Early diagnosis of secondary progressive multiple sclerosis: focus on fluid and neurophysiological biomarkers

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background and aims

Most patients with multiple sclerosis presenting with a relapsing–remitting disease course at diagnosis transition to secondary progressive multiple sclerosis (SPMS) 1–2 decades after onset. SPMS is characterized by predominant neurodegeneration and atrophy. These pathogenic hallmarks result in unsatisfactory treatment response in SPMS patients. Therefore, early diagnosis of SPMS is necessary for prompt treatment decisions. The aim of this review was to assess neurophysiological and fluid biomarkers that have the potential to monitor disease progression and support early SPMS diagnosis.

Methods

We performed a systematic review of studies that analyzed the role of neurophysiological techniques and fluid biomarkers in supporting SPMS diagnosis using the preferred reporting items for systematic reviews and meta-analyses statement.

Results

From our initial search, we selected 24 relevant articles on neurophysiological biomarkers and 55 articles on fluid biomarkers.

Conclusion

To date, no neurophysiological or fluid biomarker is sufficiently validated to support the early diagnosis of SPMS. Neurophysiological measurements, including short interval intracortical inhibition and somatosensory temporal discrimination threshold, and the neurofilament light chain fluid biomarker seem to be the most promising. Cross-sectional studies on an adequate number of patients followed by longitudinal studies are needed to confirm the diagnostic and prognostic value of these biomarkers. A combination of neurophysiological and fluid biomarkers may be more sensitive in detecting SPMS conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BAEPs :

Brainstem auditory evoked potentials

CCL :

Chemokine ligand

CHI3L1 :

Chitinase 3 Like 1

CIS :

Clinically isolated syndrome

CNS :

Central nervous system

CSF :

Cerebrospinal fluid

cTBS :

Continuous theta burst stimulation

CXC :

Chemokine CXC motif ligand

DMTs :

Disease-modifying treatments

EDSS :

Expanded disability status scale

EGF :

Epidermal growth factor

EPs :

Evoked potentials

FOXP3 :

Forkhead box P3

GEPS :

Global evoked potential score

GFAP :

Glial fibrillary acidic protein

HCs :

Healthy controls

HGF :

Hepatocyte growth factor

ICF :

Intracortical facilitation

IFN :

Interferon

IL :

Interleukin

ISI :

Interstimulus interval

iTBS :

Intermittent theta burst stimulation

LAG-3:

Lymphocyte activation gene 3

LICI :

Long interval intracortical inhibition

LTD :

Long-term depression

LTP :

Long-term potentiation

mEPS :

Multimodal evoked potential scores

MEPs :

Motor evoked potentials

miRNA :

Micro RNA

mRAGE :

Membrane receptor for advanced glycation end products

MRI :

Magnetic resonance imaging

MS :

Multiple sclerosis

MSSS :

Multiple sclerosis severity scale

M1 :

Primary motor cortex

NAWM :

Normal-appearing white matter

NfH :

Neurofilament heavy chain

NfL :

Neurofilament light chain

NfM :

Neurofilament medium chain

OCBs :

Oligoclonal bands

PAS :

Paired associative stimulation

PBMCs :

Peripheral blood mononuclear cells

PPMS :

Primary progressive multiple sclerosis

PRISMA :

Preferred reporting items for systematic reviews and metanalyses

RRMS :

Relapsing–remitting multiple sclerosis

SEPs :

Sensory evoked potentials

SICF :

Short-interval intracortical facilitation

SICI :

Short-interval intracortical inhibition

Simoa :

Single molecule array technique

SPMS :

Secondary progressive multiple sclerosis

STDT :

Somatosensory temporal discrimination threshold

TBS :

Theta burst stimulation

TGF :

Transforming growth factor

TGM6 :

Transglutaminase-6

Th :

T helper

TIM-3 :

T-cell immunoglobulin and mucin domain-containing 3

TMS :

Transcranial magnetic stimulation

TNF :

Tumor necrosis factor

Treg :

Regulatory T cells

T25FWT :

Timed 25-foot walk test

VEGF :

Vascular endothelial growth factor

VEPs :

Visual evoked potentials

9HPT :

9-Hole peg test

References

  1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343(13):938–952. https://doi.org/10.1056/nejm200009283431307

    Article  CAS  PubMed  Google Scholar 

  2. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B Jr, Calabresi PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban X, O'Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stuve O, Waubant E, Polman CH (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286. https://doi.org/10.1212/wnl.0000000000000560

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintore M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17(2):162–173. https://doi.org/10.1016/s1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

  4. Inojosa H, Proschmann U, Akgun K, Ziemssen T (2019) A focus on secondary progressive multiple sclerosis (SPMS): challenges in diagnosis and definition. J Neurol. https://doi.org/10.1007/s00415-019-09489-5

    Article  PubMed  Google Scholar 

  5. Scalfari A, Neuhaus A, Daumer M, Muraro PA, Ebers GC (2014) Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry 85(1):67–75. https://doi.org/10.1136/jnnp-2012-304333

    Article  PubMed  Google Scholar 

  6. Brown JWL, Coles A, Horakova D, Havrdova E, Izquierdo G, Prat A, Girard M, Duquette P, Trojano M, Lugaresi A, Bergamaschi R, Grammond P, Alroughani R, Hupperts R, McCombe P, VanPesch V, Sola P, Ferraro D, Grand'Maison F, Terzi M, Lechner-Scott J, Flechter S, Slee M, Shaygannejad V, Pucci E, Granella F, Jokubaitis V, Willis M, Rice C, Scolding N, Wilkins A, Pearson OR, Ziemssen T, Hutchinson M, Harding K, Jones J, McGuigan C, Butzkueven H, Kalincik T, Robertson N (2019) Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321(2):175–187. https://doi.org/10.1001/jama.2018.20588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lassmann H (2018) Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol 9:3116. https://doi.org/10.3389/fimmu.2018.03116

    Article  CAS  PubMed  Google Scholar 

  8. De Angelis F, Plantone D, Chataway J (2018) Pharmacotherapy in secondary progressive multiple sclerosis: an overview. CNS Drugs 32(6):499–526. https://doi.org/10.1007/s40263-018-0538-0

    Article  CAS  PubMed  Google Scholar 

  9. Katz Sand I, Krieger S, Farrell C, Miller AE (2014) Diagnostic uncertainty during the transition to secondary progressive multiple sclerosis. Mult Scler 20(12):1654–1657. https://doi.org/10.1177/1352458514521517

    Article  PubMed  Google Scholar 

  10. Ontaneda D, Cohen JA, Amato MP (2017) Clinical outcome measures for progressive MS trials. Mult Scler 23(12):1627–1635. https://doi.org/10.1177/1352458517729465

    Article  PubMed  Google Scholar 

  11. Bosma L, Kragt JJ, Polman CH, Uitdehaag BM (2013) Walking speed, rather than expanded disability status scale, relates to long-term patient-reported impact in progressive MS. Mult Scler 19(3):326–333. https://doi.org/10.1177/1352458512454346

    Article  PubMed  Google Scholar 

  12. Cadavid D, Cohen JA, Freedman MS, Goldman MD, Hartung HP, Havrdova E, Jeffery D, Kapoor R, Miller A, Sellebjerg F, Kinch D, Lee S, Shang S, Mikol D (2017) The EDSS-plus, an improved endpoint for disability progression in secondary progressive multiple sclerosis. Mult Scler 23(1):94–105. https://doi.org/10.1177/1352458516638941

    Article  PubMed  Google Scholar 

  13. Enzinger C, Barkhof F, Ciccarelli O, Filippi M, Kappos L, Rocca MA, Ropele S, Rovira A, Schneider T, de Stefano N, Vrenken H, Wheeler-Kingshott C, Wuerfel J, Fazekas F (2015) Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat Rev Neurol 11(12):676–686. https://doi.org/10.1038/nrneurol.2015.194

    Article  PubMed  Google Scholar 

  14. Filippi M, Preziosa P, Rocca MA (2017) Microstructural MR imaging techniques in multiple sclerosis. Neuroimaging Clin N Am 27(2):313–333. https://doi.org/10.1016/j.nic.2016.12.004

    Article  PubMed  Google Scholar 

  15. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1. https://doi.org/10.1186/2046-4053-4-1

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barro C, Leocani L, Leppert D, Comi G, Kappos L, Kuhle J (2017) Fluid biomarker and electrophysiological outcome measures for progressive MS trials. Mult Scler 23(12):1600–1613. https://doi.org/10.1177/1352458517732844

    Article  CAS  PubMed  Google Scholar 

  17. Leocani L, Rovaris M, Boneschi FM, Medaglini S, Rossi P, Martinelli V, Amadio S, Comi G (2006) Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 77(9):1030–1035. https://doi.org/10.1136/jnnp.2005.086280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jung P, Beyerle A, Ziemann U (2008) Multimodal evoked potentials measure and predict disability progression in early relapsing–remitting multiple sclerosis. Mult Scler 14(4):553–556. https://doi.org/10.1177/1352458507085758

    Article  CAS  PubMed  Google Scholar 

  19. Invernizzi P, Bertolasi L, Bianchi MR, Turatti M, Gajofatto A, Benedetti MD (2011) Prognostic value of multimodal evoked potentials in multiple sclerosis: the EP score. J Neurol 258(11):1933–1939. https://doi.org/10.1007/s00415-011-6033-x

    Article  PubMed  Google Scholar 

  20. Ramanathan S, Lenton K, Burke T, Gomes L, Storchenegger K, Yiannikas C, Vucic S (2013) The utility of multimodal evoked potentials in multiple sclerosis prognostication. J Clin Neurosci 20(11):1576–1581. https://doi.org/10.1016/j.jocn.2013.01.020

    Article  PubMed  Google Scholar 

  21. Schlaeger R, Schindler C, Grize L, Dellas S, Radue EW, Kappos L, Fuhr P (2014) Combined visual and motor evoked potentials predict multiple sclerosis disability after 20 years. Mult Scler 20(10):1348–1354. https://doi.org/10.1177/1352458514525867

    Article  PubMed  Google Scholar 

  22. Kallmann BA, Fackelmann S, Toyka KV, Rieckmann P, Reiners K (2006) Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult Scler 12(1):58–65. https://doi.org/10.1191/135248506ms1244oa

    Article  CAS  PubMed  Google Scholar 

  23. Giffroy X, Maes N, Albert A, Maquet P, Crielaard JM, Dive D (2016) Multimodal evoked potentials for functional quantification and prognosis in multiple sclerosis. BMC Neurol 16:83. https://doi.org/10.1186/s12883-016-0608-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schlaeger R, D'Souza M, Schindler C, Grize L, Kappos L, Fuhr P (2014) Prediction of MS disability by multimodal evoked potentials: investigation during relapse or in the relapse-free interval? Clin Neurophysiol 125(9):1889–1892. https://doi.org/10.1016/j.clinph.2013.12.117

    Article  CAS  PubMed  Google Scholar 

  25. Mori F, Kusayanagi H, Monteleone F, Moscatelli A, Nicoletti CG, Bernardi G, Centonze D (2013) Short interval intracortical facilitation correlates with the degree of disability in multiple sclerosis. Brain Stimul 6(1):67–71. https://doi.org/10.1016/j.brs.2012.02.001

    Article  PubMed  Google Scholar 

  26. Conte A, Lenzi D, Frasca V, Gilio F, Giacomelli E, Gabriele M, Bettolo CM, Iacovelli E, Pantano P, Pozzilli C, Inghilleri M (2009) Intracortical excitability in patients with relapsing–remitting and secondary progressive multiple sclerosis. J Neurol 256(6):933–938. https://doi.org/10.1007/s00415-009-5047-0

    Article  CAS  PubMed  Google Scholar 

  27. Vucic S, Burke T, Lenton K, Ramanathan S, Gomes L, Yannikas C, Kiernan MC (2012) Cortical dysfunction underlies disability in multiple sclerosis. Mult Scler 18(4):425–432. https://doi.org/10.1177/1352458511424308

    Article  PubMed  Google Scholar 

  28. Zeller D, Aufm Kampe K, Biller A, Stefan K, Gentner R, Schutz A, Bartsch A, Bendszus M, Toyka KV, Rieckmann P, Classen J (2010) Rapid-onset central motor plasticity in multiple sclerosis. Neurology 74(9):728–735. https://doi.org/10.1212/WNL.0b013e3181d31dcfZeller

    Article  CAS  PubMed  Google Scholar 

  29. Zeller D, Dang SY, Weise D, Rieckmann P, Toyka KV, Classen J (2012) Excitability decreasing central motor plasticity is retained in multiple sclerosis patients. BMC Neurol 12:92. https://doi.org/10.1186/1471-2377-12-92

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mori F, Rossi S, Piccinin S, Motta C, Mango D, Kusayanagi H, Bergami A, Studer V, Nicoletti CG, Buttari F, Barbieri F, Mercuri NB, Martino G, Furlan R, Nistico R, Centonze D (2013) Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. J Neurosci 33(49):19112–19119. https://doi.org/10.1523/jneurosci.2536-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Conte A, Li Voti P, Pontecorvo S, Quartuccio ME, Baione V, Rocchi L, Cortese A, Bologna M, Francia A, Berardelli A (2016) Attention-related changes in short-term cortical plasticity help to explain fatigue in multiple sclerosis. Mult Scler 22(10):1359–1366. https://doi.org/10.1177/1352458515619780

    Article  PubMed  Google Scholar 

  32. Mori F, Nistico R, Mandolesi G, Piccinin S, Mango D, Kusayanagi H, Berretta N, Bergami A, Gentile A, Musella A, Nicoletti CG, Nicoletti F, Buttari F, Mercuri NB, Martino G, Furlan R, Centonze D (2014) Interleukin-1beta promotes long-term potentiation in patients with multiple sclerosis. Neuromolecular Med 16(1):38–51. https://doi.org/10.1007/s12017-013-8249-7

    Article  CAS  PubMed  Google Scholar 

  33. Baione V, Belvisi D, Cortese A, Cetta I, Tartaglia M, Millefiorini E, Berardelli A, Conte A (2019) Cortical M1 plasticity and metaplasticity in patients with multiple sclerosis. Mult Scler Relat Disord 38:101494. https://doi.org/10.1016/j.msard.2019.101494

    Article  PubMed  Google Scholar 

  34. Brooks JB, Jardim MR, Papais-Alvarenga RM, Fragoso YD (2015) There is still a role for the blink reflex in the diagnosis and follow-up of multiple sclerosis. Clin Neurophysiol 126(4):743–747. https://doi.org/10.1016/j.clinph.2014.06.050

    Article  PubMed  Google Scholar 

  35. Degirmenci E, Erdogan C, Bir LS (2013) Correlation between blink reflex abnormalities and magnetic resonance imaging findings in patients with multiple sclerosis. Acta Neurol Belg 113(3):265–269. https://doi.org/10.1007/s13760-012-0175-1

    Article  PubMed  Google Scholar 

  36. Cabib C, Llufriu S, Martinez-Heras E, Saiz A, Valls-Sole J (2014) Abnormal control of orbicularis oculi reflex excitability in multiple sclerosis. PLoS ONE 9(8):e103897. https://doi.org/10.1371/journal.pone.0103897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klissurski M, Novachkova S, Tzvetanov P, Alexiev F (2009) Orbicularis oculi reflex abnormalities in patients with multiple sclerosis: a clinical, EMG, and MRI investigation. Electromyogr Clin Neurophysiol 49(1):59–63

    CAS  PubMed  Google Scholar 

  38. Conte A, Gianni C, Belvisi D, Cortese A, Petsas N, Tartaglia M, Cimino P, Millefiorini E, Berardelli A, Pantano P (2019) Deep grey matter involvement and altered sensory gating in multiple sclerosis. Mult Scler 1352458519845287. doi: https://doi.org/10.1177/1352458519845287

  39. Rocchi L, Conte A, Bologna M, Li Voti P, Millefiorini E, Cortese A, Pontecorvo S, Berardelli A (2016) Somatosensory temporal discrimination threshold is impaired in patients with multiple sclerosis. Clin Neurophysiol 127(4):1940–1941. https://doi.org/10.1016/j.clinph.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  40. Pryce G, Baker D (2018) Oligoclonal bands in multiple sclerosis; functional significance and therapeutic implications. Does the specificity matter? Mult Scler Relat Disord 25:131–137. https://doi.org/10.1016/j.msard.2018.07.030

    Article  PubMed  Google Scholar 

  41. Joseph FG, Hirst CL, Pickersgill TP, Ben-Shlomo Y, Robertson NP, Scolding NJ (2009) CSF oligoclonal band status informs prognosis in multiple sclerosis: a case control study of 100 patients. J Neurol Neurosurg Psychiatry 80(3):292–296. https://doi.org/10.1136/jnnp.2008.150896

    Article  CAS  PubMed  Google Scholar 

  42. Lourenco P, Shirani A, Saeedi J, Oger J, Schreiber WE, Tremlett H (2013) Oligoclonal bands and cerebrospinal fluid markers in multiple sclerosis: associations with disease course and progression. Mult Scler 19(5):577–584. https://doi.org/10.1177/1352458512459684

    Article  PubMed  Google Scholar 

  43. Gresle MM, Liu Y, Dagley LF, Haartsen J, Pearson F, Purcell AW, Laverick L, Petzold A, Lucas RM, Van der Walt A, Prime H, Morris DR, Taylor BV, Shaw G, Butzkueven H (2014) Serum phosphorylated neurofilament-heavy chain levels in multiple sclerosis patients. J Neurol Neurosurg Psychiatry 85(11):1209–1213. https://doi.org/10.1136/jnnp-2013-306789

    Article  CAS  PubMed  Google Scholar 

  44. Teunissen CE, Iacobaeus E, Khademi M, Brundin L, Norgren N, Koel-Simmelink MJ, Schepens M, Bouwman F, Twaalfhoven HA, Blom HJ, Jakobs C, Dijkstra CD (2009) Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72(15):1322–1329. https://doi.org/10.1212/WNL.0b013e3181a0fe3f

    Article  CAS  PubMed  Google Scholar 

  45. Romme Christensen J, Bornsen L, Khademi M, Olsson T, Jensen PE, Sorensen PS, Sellebjerg F (2013) CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis. Mult Scler 19(7):877–884. https://doi.org/10.1177/1352458512466929

    Article  PubMed  Google Scholar 

  46. Preziosa P, Rocca MA, Filippi M (2020) Current state-of-art of the application of serum neurofilaments in multiple sclerosis diagnosis and monitoring. Expert Rev Neurother. https://doi.org/10.1080/14737175.2020.1760846

    Article  PubMed  Google Scholar 

  47. Bhan A, Jacobsen C, Myhr KM, Dalen I, Lode K, Farbu E (2018) Neurofilaments and 10-year follow-up in multiple sclerosis. Mult Scler 24(10):1301–1307. https://doi.org/10.1177/1352458518782005

    Article  PubMed  Google Scholar 

  48. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR, Duffy DC (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28(6):595–599. https://doi.org/10.1038/nbt.1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferraro D, Guicciardi C, De Biasi S, Pinti M, Bedin R, Camera V, Vitetta F, Nasi M, Meletti S, Sola P (2020) Plasma neurofilaments correlate with disability in progressive multiple sclerosis patients. Acta Neurol Scand 141(1):16–21. https://doi.org/10.1111/ane.13152

    Article  PubMed  Google Scholar 

  50. Salzer J, Svenningsson A, Sundstrom P (2010) Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler 16(3):287–292. https://doi.org/10.1177/1352458509359725

    Article  CAS  PubMed  Google Scholar 

  51. Gil-Perotin S, Castillo-Villalba J, Cubas-Nunez L, Gasque R, Hervas D, Gomez-Mateu J, Alcala C, Perez-Miralles F, Gascon F, Dominguez JA, Casanova B (2019) Combined cerebrospinal fluid neurofilament light chain protein and chitinase-3 like-1 levels in defining disease course and prognosis in multiple sclerosis. Front Neurol 10:1008. https://doi.org/10.3389/fneur.2019.01008

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sellebjerg F, Royen L, Soelberg Sorensen P, Oturai AB, Jensen PEH (2019) Prognostic value of cerebrospinal fluid neurofilament light chain and chitinase-3-like-1 in newly diagnosed patients with multiple sclerosis. Mult Scler 25(11):1444–1451. https://doi.org/10.1177/1352458518794308

    Article  CAS  PubMed  Google Scholar 

  53. Martin SJ, McGlasson S, Hunt D, Overell J (2019) Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: a meta-analysis of case–control studies. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2018-319190

    Article  PubMed  Google Scholar 

  54. Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, Alvarez-Cermeno JC, Andreasson U, Axelsson M, Backstrom DC, Bartos A, Bjerke M, Blennow K, Boxer A, Brundin L, Burman J, Christensen T, Fialova L, Forsgren L, Frederiksen JL, Gisslen M, Gray E, Gunnarsson M, Hall S, Hansson O, Herbert MK, Jakobsson J, Jessen-Krut J, Janelidze S, Johannsson G, Jonsson M, Kappos L, Khademi M, Khalil M, Kuhle J, Landen M, Leinonen V, Logroscino G, Lu CH, Lycke J, Magdalinou NK, Malaspina A, Mattsson N, Meeter LH, Mehta SR, Modvig S, Olsson T, Paterson RW, Perez-Santiago J, Piehl F, Pijnenburg YAL, Pyykko OT, Ragnarsson O, Rojas JC, Romme Christensen J, Sandberg L, Scherling CS, Schott JM, Sellebjerg FT, Simone IL, Skillback T, Stilund M, Sundstrom P, Svenningsson A, Tortelli R, Tortorella C, Trentini A, Troiano M, Turner MR, van Swieten JC, Vagberg M, Verbeek MM, Villar LM, Visser PJ, Wallin A, Weiss A, Wikkelso C, Wild EJ (2019) Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2019.1534

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pasquali L, Lucchesi C, Pecori C, Metelli MR, Pellegrini S, Iudice A, Bonuccelli U (2015) A clinical and laboratory study evaluating the profile of cytokine levels in relapsing remitting and secondary progressive multiple sclerosis. J Neuroimmunol 278:53–59. https://doi.org/10.1016/j.jneuroim.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  56. Tejera-Alhambra M, Casrouge A, de Andrés C, Seyfferth A, Ramos-Medina R, Alonso B, Vega J, Fernández-Paredes L, Albert ML, Sánchez-Ramón S (2015) Plasma biomarkers discriminate clinical forms of multiple sclerosis. PLoS ONE 10(6):e0128952. https://doi.org/10.1371/journal.pone.0128952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khademi M, Kockum I, Andersson ML, Iacobaeus E, Brundin L, Sellebjerg F, Hillert J, Piehl F, Olsson T (2011) Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult Scler 17(3):335–343. https://doi.org/10.1177/1352458510389102

    Article  CAS  PubMed  Google Scholar 

  58. Ma X, Zhou J, Zhong Y, Jiang L, Mu P, Li Y, Singh N, Nagarkatti M, Nagarkatti P (2014) Expression, regulation and function of microRNAs in multiple sclerosis. Int J Med Sci 11(8):810–818. https://doi.org/10.7150/ijms.8647

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sondergaard HB, Hesse D, Krakauer M, Sorensen PS, Sellebjerg F (2013) Differential microRNA expression in blood in multiple sclerosis. Mult Scler 19(14):1849–1857. https://doi.org/10.1177/1352458513490542

    Article  CAS  PubMed  Google Scholar 

  60. Gandhi R, Healy B, Gholipour T, Egorova S, Musallam A, Hussain MS, Nejad P, Patel B, Hei H, Khoury S, Quintana F, Kivisakk P, Chitnis T, Weiner HL (2013) Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 73(6):729–740. https://doi.org/10.1002/ana.23880

    Article  CAS  PubMed  Google Scholar 

  61. Mancuso R, Hernis A, Agostini S, Rovaris M, Caputo D, Clerici M (2015) MicroRNA-572 expression in multiple sclerosis patients with different patterns of clinical progression. J Transl Med 13:148. https://doi.org/10.1186/s12967-015-0504-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haghikia A, Hellwig K, Baraniskin A, Holzmann A, Decard BF, Thum T, Gold R (2012) Regulated microRNAs in the CSF of patients with multiple sclerosis: a case–control study. Neurology 79(22):2166–2170. https://doi.org/10.1212/WNL.0b013e3182759621

    Article  CAS  PubMed  Google Scholar 

  63. Vistbakka J, Elovaara I, Lehtimaki T, Hagman S (2017) Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult Scler 23(3):403–412. https://doi.org/10.1177/1352458516651141

    Article  CAS  PubMed  Google Scholar 

  64. Ebrahimkhani S, Vafaee F, Young PE, Hur SSJ, Hawke S, Devenney E, Beadnall H, Barnett MH, Suter CM, Buckland ME (2017) Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep 7(1):14293. https://doi.org/10.1038/s41598-017-14301-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Romme Christensen J, Bornsen L, Ratzer R, Piehl F, Khademi M, Olsson T, Sorensen PS, Sellebjerg F (2013) Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS ONE 8(3):e57820. https://doi.org/10.1371/journal.pone.0057820

    Article  CAS  PubMed  Google Scholar 

  66. Venken K, Hellings N, Hensen K, Rummens JL, Medaer R, D'Hooghe MB, Dubois B, Raus J, Stinissen P (2006) Secondary progressive in contrast to relapsing–remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res 83(8):1432–1446. https://doi.org/10.1002/jnr.20852

    Article  CAS  PubMed  Google Scholar 

  67. Sternberg Z, Chiotti A, Tario J, Chichelli T, Patel N, Chadha K, Yu J, Karmon Y (2016) Reduced expression of membrane-bound (m)RAGE is a biomarker of multiple sclerosis disease progression. Immunobiology 221(2):193–198. https://doi.org/10.1016/j.imbio.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  68. Lavon I, Heli C, Brill L, Charbit H, Vaknin-Dembinsky A (2019) Blood Levels of co-inhibitory-receptors: a biomarker of disease prognosis in multiple sclerosis. Front Immunol 10:835. https://doi.org/10.3389/fimmu.2019.00835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Iacobaeus E, Amoudruz P, Strom M, Khademi M, Brundin L, Hillert J, Kockum I, Malmstrom V, Olsson T, Tham E, Piehl F (2011) The expression of VEGF-A is down regulated in peripheral blood mononuclear cells of patients with secondary progressive multiple sclerosis. PLoS ONE 6(5):e19138. https://doi.org/10.1371/journal.pone.0019138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ingram G, Hakobyan S, Hirst CL, Harris CL, Pickersgill TP, Cossburn MD, Loveless S, Robertson NP, Morgan BP (2010) Complement regulator factor H as a serum biomarker of multiple sclerosis disease state. Brain 133(Pt 6):1602–1611. https://doi.org/10.1093/brain/awq085

    Article  PubMed  Google Scholar 

  71. DeMarshall C, Goldwaser EL, Sarkar A, Godsey GA, Acharya NK, Thayasivam U, Belinka BA, Nagele RG (2017) Autoantibodies as diagnostic biomarkers for the detection and subtyping of multiple sclerosis. J Neuroimmunol 309:51–57. https://doi.org/10.1016/j.jneuroim.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  72. Cristofanilli M, Gratch D, Pagano B, McDermott K, Huang J, Jian J, Bates D, Sadiq SA (2017) Transglutaminase-6 is an autoantigen in progressive multiple sclerosis and is upregulated in reactive astrocytes. Mult Scler 23(13):1707–1715. https://doi.org/10.1177/1352458516684022

    Article  CAS  PubMed  Google Scholar 

  73. Nishihara H, Shimizu F, Kitagawa T, Yamanaka N, Akada J, Kuramitsu Y, Sano Y, Takeshita Y, Maeda T, Abe M, Koga M, Nakamura K, Kanda T (2017) Identification of galectin-3 as a possible antibody target for secondary progressive multiple sclerosis. Mult Scler 23(3):382–394. https://doi.org/10.1177/1352458516655217

    Article  CAS  PubMed  Google Scholar 

  74. Axelsson M, Malmestrom C, Nilsson S, Haghighi S, Rosengren L, Lycke J (2011) Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J Neurol 258(5):882–888. https://doi.org/10.1007/s00415-010-5863-2

    Article  CAS  PubMed  Google Scholar 

  75. Burman J, Svenningsson A (2016) Cerebrospinal fluid concentration of galectin-9 is increased in secondary progressive multiple sclerosis. J Neuroimmunol 292:40–44. https://doi.org/10.1016/j.jneuroim.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  76. Barbour C, Kosa P, Komori M, Tanigawa M, Masvekar R, Wu T, Johnson K, Douvaras P, Fossati V, Herbst R, Wang Y, Tan K, Greenwood M, Bielekova B (2017) Molecular-based diagnosis of multiple sclerosis and its progressive stage. Ann Neurol 82(5):795–812. https://doi.org/10.1002/ana.25083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dickens AM, Larkin JR, Griffin JL, Cavey A, Matthews L, Turner MR, Wilcock GK, Davis BG, Claridge TD, Palace J, Anthony DC, Sibson NR (2014) A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology 83(17):1492–1499. https://doi.org/10.1212/wnl.0000000000000905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Teunissen CE, Koel-Simmelink MJ, Pham TV, Knol JC, Khalil M, Trentini A, Killestein J, Nielsen J, Vrenken H, Popescu V, Dijkstra CD, Jimenez CR (2011) Identification of biomarkers for diagnosis and progression of MS by MALDI-TOF mass spectrometry. Mult Scler 17(7):838–850. https://doi.org/10.1177/1352458511399614

    Article  CAS  PubMed  Google Scholar 

  79. Herman S, Akerfeldt T, Spjuth O, Burman J, Kultima K (2019) Biochemical differences in cerebrospinal fluid between secondary progressive and relapsing–remitting multiple sclerosis. Cells 8(2):84. https://doi.org/10.3390/cells8020084

    Article  CAS  PubMed Central  Google Scholar 

  80. Ottervald J, Franzen B, Nilsson K, Andersson LI, Khademi M, Eriksson B, Kjellstrom S, Marko-Varga G, Vegvari A, Harris RA, Laurell T, Miliotis T, Matusevicius D, Salter H, Ferm M, Olsson T (2010) Multiple sclerosis: identification and clinical evaluation of novel CSF biomarkers. J Proteomics 73(6):1117–1132. https://doi.org/10.1016/j.jprot.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  81. Herman S, Khoonsari PE, Tolf A, Steinmetz J, Zetterberg H, Åkerfeldt T, Jakobsson PJ, Larsson A, Spjuth O, Burman J, Kultima K (2018) Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis. Theranostics 8(16):4477–4490. https://doi.org/10.7150/thno.26249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gencer M, Akbayir E, Sen M, Arsoy E, Yilmaz V, Bulut N, Tuzun E, Turkoglu R (2019) Serum orexin-A levels are associated with disease progression and motor impairment in multiple sclerosis. Neurol Sci 40(5):1067–1070. https://doi.org/10.1007/s10072-019-3708-z

    Article  PubMed  Google Scholar 

  83. Scarisbrick IA, Linbo R, Vandell AG, Keegan M, Blaber SI, Blaber M, Sneve D, Lucchinetti CF, Rodriguez M, Diamandis EP (2008) Kallikreins are associated with secondary progressive multiple sclerosis and promote neurodegeneration. Biol Chem 389(6):739–745. https://doi.org/10.1515/bc.2008.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oliveira SR, Kallaur AP, Reiche EMV, Kaimen-Maciel DR, Panis C, Lozovoy MAB, Morimoto HK, Maes M, Dichi I, Simao ANC (2017) Albumin and protein oxidation are predictors that differentiate relapsing–remitting from progressive clinical forms of multiple sclerosis. Mol Neurobiol 54(4):2961–2968. https://doi.org/10.1007/s12035-016-9860-z

    Article  CAS  PubMed  Google Scholar 

  85. Benesova Y, Vasku A, Novotna H, Litzman J, Stourac P, Beranek M, Kadanka Z, Bednarik J (2009) Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers of various courses in multiple sclerosis. Mult Scler 15(3):316–322. https://doi.org/10.1177/1352458508099482

    Article  CAS  PubMed  Google Scholar 

  86. Muris AH, Rolf L, Broen K, Hupperts R, Damoiseaux J, Smolders J (2016) A low vitamin D status at diagnosis is associated with an early conversion to secondary progressive multiple sclerosis. J Steroid Biochem Mol Biol 164:254–257. https://doi.org/10.1016/j.jsbmb.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  87. Regenold WT, Phatak P, Makley MJ, Stone RD, Kling MA (2008) Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J Neurol Sci 275(1–2):106–112. https://doi.org/10.1016/j.jns.2008.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guimaraes I, Cardoso MI, Sa MJ (2006) Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis. Mult Scler 12(3):354–356. https://doi.org/10.1191/1352458506ms1288sr

    Article  CAS  PubMed  Google Scholar 

  89. Koch MW, George S, Wall W, Wee Yong V, Metz LM (2015) Serum NSE level and disability progression in multiple sclerosis. J Neurol Sci 350(1–2):46–50. https://doi.org/10.1016/j.jns.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  90. Malhotra S, Fissolo N, Tintore M, Wing AC, Castillo J, Vidal-Jordana A, Montalban X, Comabella M (2015) Role of high mobility group box protein 1 (HMGB1) in peripheral blood from patients with multiple sclerosis. J Neuroinflammation 12:48. https://doi.org/10.1186/s12974-015-0269-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Teunissen CE, Killestein J, Kragt JJ, Polman CH, Dijkstra CD, Blom HJ (2008) Serum homocysteine levels in relation to clinical progression in multiple sclerosis. J Neurol Neurosurg Psychiatry 79(12):1349–1353. https://doi.org/10.1136/jnnp.2008.151555

    Article  CAS  PubMed  Google Scholar 

  92. Harirchian MH, Sahraian MA, Shirani A (2006) Serum prolactin level in patients with multiple sclerosis: a case control study. Med Sci Monit 12(4):Cr177–180

    CAS  PubMed  Google Scholar 

  93. Berilgen MS, Bulut S, Ustundag B, Tekatas A, Ayar A (2005) Patients with multiple sclerosis have higher levels of serum ghrelin. Neuro Endocrinol Lett 26(6):819–822

    CAS  PubMed  Google Scholar 

  94. Aeinehband S, Brenner P, Stahl S, Bhat M, Fidock MD, Khademi M, Olsson T, Engberg G, Jokinen J, Erhardt S, Piehl F (2016) Cerebrospinal fluid kynurenines in multiple sclerosis; relation to disease course and neurocognitive symptoms. Brain Behav Immun 51:47–55. https://doi.org/10.1016/j.bbi.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  95. Pasquali L, Pecori C, Lucchesi C, LoGerfo A, Iudice A, Siciliano G, Bonuccelli U (2015) Plasmatic oxidative stress biomarkers in multiple sclerosis: relation with clinical and demographic characteristics. Clin Biochem 48(1–2):19–23. https://doi.org/10.1016/j.clinbiochem.2014.09.024

    Article  CAS  PubMed  Google Scholar 

  96. Eshaghi A, Prados F, Brownlee WJ, Altmann DR, Tur C, Cardoso MJ, De Angelis F, van de Pavert SH, Cawley N, De Stefano N, Stromillo ML, Battaglini M, Ruggieri S, Gasperini C, Filippi M, Rocca MA, Rovira A, Sastre-Garriga J, Vrenken H, Leurs CE, Killestein J, Pirpamer L, Enzinger C, Ourselin S, Wheeler-Kingshott C, Chard D, Thompson AJ, Alexander DC, Barkhof F, Ciccarelli O (2018) Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol 83(2):210–222. https://doi.org/10.1002/ana.25145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC (2019) The interindividual variability of transcranial magnetic stimulation effects: implications for diagnostic use in movement disorders. Mov Disord 34(7):936–949. https://doi.org/10.1002/mds.27736

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Melissa Kerr for the English language editing.

Funding

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this work.

Corresponding author

Correspondence to Antonella Conte.

Ethics declarations

Conflicts of interest

No competing interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrazzano, G., Crisafulli, S.G., Baione, V. et al. Early diagnosis of secondary progressive multiple sclerosis: focus on fluid and neurophysiological biomarkers. J Neurol 268, 3626–3645 (2021). https://doi.org/10.1007/s00415-020-09964-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-09964-4

Keywords

Navigation