Skip to main content

Advertisement

Log in

Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Objective

Application of Tandem Mass Tags (TMT)-based LC–MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI.

Methods

A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague–Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC–MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans.

Results

Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans.

Conclusion

Using TMT combined with LC–MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number can be found in the article/Supplementary material.

References

  1. Rosen HE, Bari I, Paichadze N, Peden M, Khayesi M, Monclus J, Hyder AA (2022) Global road safety 2010–18: an analysis of Global Status Reports. Injury 20:S0020-1383. https://doi.org/10.1016/j.injury.2022.07.030

    Article  Google Scholar 

  2. Smith DH, Hicks R, Povlishock JT (2013) Therapy development for diffuse axonal injury. J Neurotrauma 30:307–323. https://doi.org/10.1089/neu.2012.2825

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pavlovic D, Pekic S, Stojanovic M, Popovic V (2019) Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary 22:270–282. https://doi.org/10.1007/s11102-019-00957-9

    Article  PubMed  Google Scholar 

  4. Adams JH, Graham DI, Murray LS, Scott G (1982) Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol 12:557–563. https://doi.org/10.1002/ana.410120610

    Article  PubMed  CAS  Google Scholar 

  5. Pearl GS (1998) Traumatic neuropathology. Clin Lab Med 18:39–64

    Article  PubMed  CAS  Google Scholar 

  6. Adams H, Mitchell DE, Graham DI, Doyle D (1977) Diffuse brain damage of immediate impact type. Its relationship to “primary brain-stem damage” in head injury. Brain 100:489–502. https://doi.org/10.1093/brain/100.3.489

    Article  PubMed  CAS  Google Scholar 

  7. Al-Sarraj S, Fegan-Earl A, Ugbade A, Bodi I, Chapman R, Poole S, Swift B, Jerreat P, Cary N (2012) Focal traumatic brain stem injury is a rare type of head injury resulting from assault: A forensic neuropathological study. J Forensic Leg Med 19:144–151. https://doi.org/10.1016/j.jflm.2011.12.015

    Article  PubMed  Google Scholar 

  8. Smith DH, Nonaka M, Miller R, Leoni M, Chen XH, Alsop D, Meaney DF (2000) Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J Neurosurg 93:315–322. https://doi.org/10.3171/jns.2000.93.2.0315

    Article  PubMed  CAS  Google Scholar 

  9. Dolinak D, Smith C, Graham DI (2000) Global hypoxia per se is an unusual cause of axonal injury. Acta Neuropathol 100:553–560. https://doi.org/10.1007/s004010000218

    Article  PubMed  CAS  Google Scholar 

  10. Szecsi A, Danics K, Kondracs A, Szollosi Z (2020) Traumatic Axonal injury: a case report. Am J Forensic Med Pathol 41:211–212. https://doi.org/10.1097/PAF.0000000000000587

    Article  PubMed  Google Scholar 

  11. Tsitsopoulos PP, Abu Hamdeh S, Marklund N (2017) Current opportunities for clinical monitoring of axonal pathology in traumatic brain injury. Front Neurol 8:599. https://doi.org/10.3389/fneur.2017.00599

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schmahmann JD, Smith EE, Eichler FS, Filley CM (2008) Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 1142:266–309. https://doi.org/10.1196/annals.1444.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Graham DI, Adams JH, Murray LS, Jennett B (2005) Neuropathology of the vegetative state after head injury. Neuropsychol Rehabil 15:198–213. https://doi.org/10.1080/09602010443000452

    Article  PubMed  CAS  Google Scholar 

  14. Johnson VE, Stewart W, Smith DH (2012) Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol 22:142–149. https://doi.org/10.1111/j.1750-3639.2011.00513.x

    Article  PubMed  CAS  Google Scholar 

  15. Sundman MH, Hall EE, Chen NK (2014) Examining the relationship between head trauma and neurodegenerative disease: A review of epidemiology, pathology and neuroimaging techniques. J Alzheimers Dis Parkinsonism 4:137. https://doi.org/10.4172/2161-0460.1000137

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW (1993) Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett 160:139–144. https://doi.org/10.1016/0304-3940(93)90398-5

    Article  PubMed  CAS  Google Scholar 

  17. Hortobagyi T, Wise S, Hunt N, Cary N, Djurovic V, Fegan-Earl A, Shorrock K, Rouse D, Al-Sarraj S (2007) Traumatic axonal damage in the brain can be detected using beta-APP immunohistochemistry within 35 min after head injury to human adults. Neuropathol Appl Neurobiol 33:226–237. https://doi.org/10.1111/j.1365-2990.2006.00794.x

    Article  PubMed  CAS  Google Scholar 

  18. Hayashi T, Ago K, Nakamae T, Higo E, Ogata M (2015) Two different immunostaining patterns of beta-amyloid precursor protein (APP) may distinguish traumatic from nontraumatic axonal injury. Int J Legal Med 129:1085–1090. https://doi.org/10.1007/s00414-015-1245-8

    Article  PubMed  Google Scholar 

  19. Pittella JE, Gusmao SN (2003) Diffuse vascular injury in fatal road traffic accident victims: its relationship to diffuse axonal injury. J Forensic Sci 48:626–630

    Article  PubMed  Google Scholar 

  20. Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, Zahedi RP, Batist G, Borchers CH (2020) Targeted and untargeted proteomics approaches in biomarker development. Proteomics 20:e1900029. https://doi.org/10.1002/pmic.201900029

    Article  PubMed  CAS  Google Scholar 

  21. Zhang P, Zhu S, Li Y, Zhao M, Liu M, Gao J, Ding S, Li J (2016) Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS. J Proteomics 133:93–99. https://doi.org/10.1016/j.jprot.2015.12.014

    Article  PubMed  CAS  Google Scholar 

  22. Chen Q, Chen X, Xu L, Zhang R, Li Z, Yue X, Qiao D (2022) Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies. Forensic Sci Med Pathol 18:530–544. https://doi.org/10.1007/s12024-022-00522-0

    Article  PubMed  Google Scholar 

  23. Zhang P, Zhu S, Zhao M, Zhao P, Zhao H, Deng J, Li J (2018) Identification of plasma biomarkers for diffuse axonal injury in rats by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Brain Res Bull 142:224–232. https://doi.org/10.1016/j.brainresbull.2018.07.015

    Article  PubMed  CAS  Google Scholar 

  24. Reichard RR, Smith C, Graham DI (2005) The significance of beta-APP immunoreactivity in forensic practice. Neuropathol Appl Neurobiol 31:304–313. https://doi.org/10.1111/j.1365-2990.2005.00645.x

    Article  PubMed  CAS  Google Scholar 

  25. Hayashi T, Ago K, Ago M, Ogata M (2009) Two patterns of beta-amyloid precursor protein (APP) immunoreactivity in cases of blunt head injury. Leg Med (Tokyo) 11(Suppl 1):S171-173. https://doi.org/10.1016/j.legalmed.2009.01.076

    Article  PubMed  Google Scholar 

  26. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12:564–574. https://doi.org/10.1002/ana.410120611

    Article  PubMed  CAS  Google Scholar 

  27. Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189. https://doi.org/10.1080/004982599238047

    Article  PubMed  CAS  Google Scholar 

  28. Scott G, Ramlackhansingh AF, Edison P, Hellyer P, Cole J, Veronese M, Leech R, Greenwood RJ, Turkheimer FE, Gentleman SM, Heckemann RA, Matthews PM, Brooks DJ, Sharp DJ (2016) Amyloid pathology and axonal injury after brain trauma. Neurology 86:821–828. https://doi.org/10.1212/WNL.0000000000002413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42. https://doi.org/10.1093/brain/aws322

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liang Y, Tong F, Zhang L, Zhu L, Li W, Huang W, Zhao S, He G, Zhou Y (2019) iTRAQ-based proteomic analysis discovers potential biomarkers of diffuse axonal injury in rats. Brain Res Bull 153:289–304. https://doi.org/10.1016/j.brainresbull.2019.09.004

    Article  PubMed  CAS  Google Scholar 

  31. Song T, Zhu Y, Zhang P, Zhao M, Zhao D, Ding S, Zhu S, Li J (2019) Integrated proteomics and metabolomic analyses of plasma injury biomarkers in a serious brain trauma model in rats. Int J Mol Sci 20. https://doi.org/10.3390/ijms20040922

  32. Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43. https://doi.org/10.1016/j.expneurol.2012.01.013

    Article  PubMed  CAS  Google Scholar 

  33. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741. https://doi.org/10.1016/S1474-4422(08)70164-9

    Article  PubMed  Google Scholar 

  34. Cui W, Wu X, Shi Y, Guo W, Luo J, Liu H, Zheng L, Du Y, Wang P, Wang Q, Feng D, Ge S, Qu Y (2021) 20-HETE synthesis inhibition attenuates traumatic brain injury-induced mitochondrial dysfunction and neuronal apoptosis via the SIRT1/PGC-1alpha pathway: a translational study. Cell Prolif 54:e12964. https://doi.org/10.1111/cpr.12964

    Article  PubMed  CAS  Google Scholar 

  35. Birnie M, Morrison R, Camara R, Strauss KI (2013) Temporal changes of cytochrome P450 (Cyp) and eicosanoid-related gene expression in the rat brain after traumatic brain injury. BMC Genomics 14:303. https://doi.org/10.1186/1471-2164-14-303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gorica E, Calderone V (2022) Arachidonic acid derivatives and neuroinflammation. CNS Neurol Disord Drug Targets 21:118–129. https://doi.org/10.2174/1871527320666210208130412

    Article  PubMed  CAS  Google Scholar 

  37. Kruman II, Mattson MP (1999) Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem 72:529–540. https://doi.org/10.1046/j.1471-4159.1999.0720529.x

    Article  PubMed  CAS  Google Scholar 

  38. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290. https://doi.org/10.1146/annurev.cellbio.15.1.269

    Article  PubMed  CAS  Google Scholar 

  39. Bruggeman GF, Haitsma IK, Dirven CMF, Volovici V (2021) Traumatic axonal injury (TAI): definitions, pathophysiology and imaging-a narrative review. Acta Neurochir (Wien) 163:31–44. https://doi.org/10.1007/s00701-020-04594-1

    Article  PubMed  Google Scholar 

  40. Johnson VE, Stewart W, Weber MT, Cullen DK, Siman R, Smith DH (2016) SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol 131:115–135. https://doi.org/10.1007/s00401-015-1506-0

    Article  PubMed  CAS  Google Scholar 

  41. Guo C, Wang W, Liu C, Myatt L, Sun K (2014) Induction of PGF2alpha synthesis by cortisol through GR dependent induction of CBR1 in human amnion fibroblasts. Endocrinology 155:3017–3024. https://doi.org/10.1210/en.2013-1848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y (2015) Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim Biophys Acta 1851:414–421. https://doi.org/10.1016/j.bbalip.2014.07.008

    Article  PubMed  CAS  Google Scholar 

  43. Ismail E, Al-Mulla F, Tsuchida S, Suto K, Motley P, Harrison PR, Birnie GD (2000) Carbonyl reductase: a novel metastasis-modulating function. Cancer Res 60:1173–1176

    PubMed  CAS  Google Scholar 

  44. Hara A, Endo S, Matsunaga T, El-Kabbani O, Miura T, Nishinaka T, Terada T (2017) Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs. Biochem Pharmacol 138:185–192. https://doi.org/10.1016/j.bcp.2017.04.023

    Article  PubMed  CAS  Google Scholar 

  45. Ghersi-Egea JF, Leninger-Muller B, Suleman G, Siest G, Minn A (1994) Localization of drug-metabolizing enzyme activities to blood-brain interfaces and circumventricular organs. J Neurochem 62:1089–1096. https://doi.org/10.1046/j.1471-4159.1994.62031089.x

    Article  PubMed  CAS  Google Scholar 

  46. Kumarakulasingham M, Rooney PH, Dundas SR, Telfer C, Melvin WT, Curran S, Murray GI (2005) Cytochrome p450 profile of colorectal cancer: identification of markers of prognosis. Clin Cancer Res 11:3758–3765. https://doi.org/10.1158/1078-0432.CCR-04-1848

    Article  PubMed  CAS  Google Scholar 

  47. Luo B, Chen C, Wu XY, Yan DD, Chen FF, Yu XX, Yuan JP (2020) Cytochrome P450 2U1 is a novel independent prognostic biomarker in breast cancer patients. Front Oncol 10:1379. https://doi.org/10.3389/Fonc.2020.01379

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chuang SS, Helvig C, Taimi M, Ramshaw HA, Collop AH, Amad M, White JA, Petkovich M, Jones G, Korczak B (2004) CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes omega- and (omega-1)-hydroxylation of fatty acids. J Biol Chem 279:6305–6314. https://doi.org/10.1074/jbc.M311830200

    Article  PubMed  CAS  Google Scholar 

  49. Kehl F, Cambj-Sapunar L, Maier KG, Miyata N, Kametani S, Okamoto H, Hudetz AG, Schulte ML, Zagorac D, Harder DR, Roman RJ (2002) 20-HETE contributes to the acute fall in cerebral blood flow after subarachnoid hemorrhage in the rat. Am J Physiol Heart Circ Physiol 282:H1556-1565. https://doi.org/10.1152/ajpheart.00924.2001

    Article  PubMed  CAS  Google Scholar 

  50. Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82:131–185. https://doi.org/10.1152/physrev.00021.2001

    Article  PubMed  CAS  Google Scholar 

  51. Sura P, Sura R, Enayetallah AE, Grant DF (2008) Distribution and expression of soluble epoxide hydrolase in human brain. J Histochem Cytochem 56:551–559. https://doi.org/10.1369/jhc.2008.950659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Domingues MF, Callai-Silva N, Piovesan AR, Carlini CR (2019) Soluble epoxide hydrolase and brain cholesterol metabolism. Front Mol Neurosci 12:325. https://doi.org/10.3389/fnmol.2019.00325

    Article  PubMed  CAS  Google Scholar 

  53. Zeldin DC (2001) Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 276:36059–36062. https://doi.org/10.1074/jbc.R100030200

    Article  PubMed  CAS  Google Scholar 

  54. Ulu A, Harris TR, Morisseau C, Miyabe C, Inoue H, Schuster G, Dong H, Iosif AM, Liu JY, Weiss RH, Chiamvimonvat N, Imig JD, Hammock BD (2013) Anti-inflammatory effects of omega-3 polyunsaturated fatty acids and soluble epoxide hydrolase inhibitors in angiotensin-II-dependent hypertension. J Cardiovasc Pharmacol 62:285–297. https://doi.org/10.1097/FJC.0b013e318298e460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wu CH, Shyue SK, Hung TH, Wen S, Lin CC, Chang CF, Chen SF (2017) Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage. J Neuroinflammation 14:230. https://doi.org/10.1186/s12974-017-1005-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Edin ML, Hamedani BG, Gruzdev A, Graves JP, Lih FB, Arbes SJ 3rd, Singh R, Orjuela Leon AC, Bradbury JA, DeGraff LM, Hoopes SL, Arand M, Zeldin DC (2018) Epoxide hydrolase 1 (EPHX1) hydrolyzes epoxyeicosanoids and impairs cardiac recovery after ischemia. J Biol Chem 293:3281–3292. https://doi.org/10.1074/jbc.RA117.000298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kuo YM, Lee YH (2022) Epoxyeicosatrienoic acids and soluble epoxide hydrolase in physiology and diseases of the central nervous system. Chin J Physiol 65:1–11. https://doi.org/10.4103/cjp.cjp_80_21

    Article  PubMed  CAS  Google Scholar 

  58. Hung TH, Shyue SK, Wu CH, Chen CC, Lin CC, Chang CF, Chen SF (2017) Deletion or inhibition of soluble epoxide hydrolase protects against brain damage and reduces microglia-mediated neuroinflammation in traumatic brain injury. Oncotarget 8:103236–103260. https://doi.org/10.18632/oncotarget.21139

    Article  PubMed  PubMed Central  Google Scholar 

  59. Freedman BI (2003) Susceptibility genes for hypertension and renal failure. J Am Soc Nephrol 14:S192-194. https://doi.org/10.1097/01.asn.0000070075.89996.4a

    Article  PubMed  CAS  Google Scholar 

  60. Glotov AS, Ivaschenko TE, Obraztsova GI, Nasedkina TV, Baranov VS (2007) Association of permanent arterial hypertension with the renin-angiotensin and kinin-bradykinin system genes in children. Mol Biol 41:14–21. https://doi.org/10.1134/S0026893307010037

    Article  CAS  Google Scholar 

  61. Fang X (2006) Soluble epoxide hydrolase: a novel target for the treatment of hypertension. Recent Pat Cardiovasc Drug Discov 1:67–72. https://doi.org/10.2174/157489006775244227

    Article  PubMed  CAS  Google Scholar 

  62. Campbell WB (2000) New role for epoxyeicosatrienoic acids as anti-inflammatory mediators. Trends Pharmacol Sci 21:125–127. https://doi.org/10.1016/s0165-6147(00)01472-3

    Article  PubMed  CAS  Google Scholar 

  63. Li X, Wu X (2021) Soluble epoxide hydrolase (Ephx2) silencing attenuates the hydrogen peroxide-induced oxidative damage in IEC-6 cells. Arch Med Sci 17:1075–1086. https://doi.org/10.5114/aoms.2019.87137

    Article  PubMed  CAS  Google Scholar 

  64. Koerner IP, Jacks R, DeBarber AE, Koop D, Mao P, Grant DF, Alkayed NJ (2007) Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemic injury. J Neurosci 27:4642–4649. https://doi.org/10.1523/JNEUROSCI.0056-07.2007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Strauss KI, Gruzdev A, Zeldin DC (2013) Altered behavioral phenotypes in soluble epoxide hydrolase knockout mice: effects of traumatic brain injury. Prostaglandins Other Lipid Mediat 104–105:18–24. https://doi.org/10.1016/j.prostaglandins.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  66. Tanaka H, Kamita SG, Wolf NM, Harris TR, Wu Z, Morisseau C, Hammock BD (2008) Transcriptional regulation of the human soluble epoxide hydrolase gene EPHX2. Biochim Biophys Acta-Gene Regul Mech 1779:17–27. https://doi.org/10.1016/j.bbagrm.2007.11.005

    Article  CAS  Google Scholar 

  67. He JL, Wang CJ, Zhu Y, Ai D (2016) Soluble epoxide hydrolase: a potential target for metabolic diseases. J Diabetes 8:305–313. https://doi.org/10.1111/1753-0407.12358

    Article  PubMed  CAS  Google Scholar 

  68. Lorthioir A, Guerrot D, Joannides R, Bellien J (2012) Diabetic CVD–soluble epoxide hydrolase as a target. Cardiovasc Hematol Agents Med Chem 10:212–222. https://doi.org/10.2174/187152512802651042

    Article  PubMed  CAS  Google Scholar 

  69. Bui P, Imaizumi S, Beedanagari SR, Reddy ST, Hankinson O (2011) Human CYP2S1 metabolizes cyclooxygenase- and lipoxygenase-derived eicosanoids. Drug Metab Dispos 39:180–190. https://doi.org/10.1124/dmd.110.035121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Thomas I, Dickens AM, Posti JP, Czeiter E, Duberg D, Sinioja T, Krakstrom M, Retel Helmrich IRA, Wang KKW, Maas AIR, Steyerberg EW, Menon DK, Tenovuo O, Hyotylainen T, Buki A, Oresic M, Participants C-T, Investigators, (2022) Serum metabolome associated with severity of acute traumatic brain injury. Nat Commun 13:2545. https://doi.org/10.1038/s41467-022-30227-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Demediuk P, Daly MP, Faden AI (1990) Changes in free fatty acids, phospholipids, and cholesterol following impact injury to the rat spinal cord. J Neurosci Res 25:152. https://doi.org/10.1002/jnr.490250120

    Article  PubMed  CAS  Google Scholar 

  72. Xie C, Lovell MA, Markesbery WR (1998) Glutathione transferase protects neuronal cultures against four hydroxynonenal toxicity. Free Radic Biol Med 25:979–988. https://doi.org/10.1016/s0891-5849(98)00186-5

    Article  PubMed  CAS  Google Scholar 

  73. Tew KD, Townsend DM (2012) Glutathione-s-transferases as determinants of cell survival and death. Antioxid Redox Signal 17:1728–1737. https://doi.org/10.1089/ars.2012.4640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wang P, Xu TY, Wei K, Guan YF, Wang X, Xu H, Su DF, Pei G, Miao CY (2014) ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy 10:1535–1548. https://doi.org/10.4161/auto.29203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lin C, Chao H, Li Z, Xu X, Liu Y, Bao Z, Hou L, Liu Y, Wang X, You Y, Liu N, Ji J (2017) Omega-3 fatty acids regulate NLRP3 inflammasome activation and prevent behavior deficits after traumatic brain injury. Exp Neurol 290:115–122. https://doi.org/10.1016/j.expneurol.2017.01.005

    Article  PubMed  CAS  Google Scholar 

  76. Mao Q (2008) BCRP/ABCG2 in the placenta: expression, function and regulation. Pharm Res 25:1244–1255. https://doi.org/10.1007/s11095-008-9537-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Martin CM, Ferdous A, Gallardo T, Humphries C, Sadek H, Caprioli A, Garcia JA, Szweda LI, Garry MG, Garry DJ (2008) Hypoxia-inducible factor-2alpha transactivates Abcg2 and promotes cytoprotection in cardiac side population cells. Circ Res 102:1075–1081. https://doi.org/10.1161/CIRCRESAHA.107.161729

    Article  PubMed  CAS  Google Scholar 

  78. Ge G, Zhang H, Li R, Liu H (2017) The function of SDF-1-CXCR4 axis in SP cells-mediated protective role for renal ischemia/reperfusion injury by SHH/GLI1-ABCG2 pathway. Shock 47:251–259. https://doi.org/10.1097/SHK.0000000000000694

    Article  PubMed  CAS  Google Scholar 

  79. Maher TJ, Ren Y, Li Q, Braunlin E, Garry MG, Sorrentino BP, Martin CM (2014) ATP-binding cassette transporter Abcg2 lineage contributes to the cardiac vasculature after oxidative stress. Am J Physiol Heart Circ Physiol 306:H1610-1618. https://doi.org/10.1152/ajpheart.00638.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Doyle MJ, Zhou S, Tanaka KK, Pisconti A, Farina NH, Sorrentino BP, Olwin BB (2011) Abcg2 labels multiple cell types in skeletal muscle and participates in muscle regeneration. J Cell Biol 195:147–163. https://doi.org/10.1083/jcb.201103159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16:202–208. https://doi.org/10.1016/s0899-9007(99)00266-x

    Article  PubMed  CAS  Google Scholar 

  82. Cao W, Liu N, Tang S, Bao L, Shen L, Yuan H, Zhao X, Lu H (2008) Acetyl-Coenzyme A acyltransferase 2 attenuates the apoptotic effects of BNIP3 in two human cell lines. Biochim Biophys Acta 1780:873–880. https://doi.org/10.1016/j.bbagen.2008.02.007

    Article  PubMed  CAS  Google Scholar 

  83. Mohsen AW, Vockley J (1995) Identification of the active site catalytic residue in human isovaleryl-CoA dehydrogenase. Biochemistry 34:10146–10152. https://doi.org/10.1021/bi00032a007

    Article  PubMed  CAS  Google Scholar 

  84. Li J, Qi Y, Liu H, Cui Y, Zhang L, Gong H, Li Y, Li L, Zhang Y (2013) Acute high-altitude hypoxic brain injury: Identification of ten differential proteins. Neural Regen Res 8:2932–2941. https://doi.org/10.3969/j.issn.1673-5374.2013.31.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Opii WO, Nukala VN, Sultana R, Pandya JD, Day KM, Merchant ML, Klein JB, Sullivan PG, Butterfield DA (2007) Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. J Neurotrauma 24:772–789. https://doi.org/10.1089/neu.2006.0229

    Article  PubMed  Google Scholar 

  86. Lorek AK, Penrice JM, Cady EB, Leonard JV, Wyatt JS, Iles RA, Burns SP, Reynolds EO (1996) Cerebral energy metabolism in isovaleric acidaemia. Arch Dis Child Fetal Neonatal Ed 74:F211-213. https://doi.org/10.1136/fn.74.3.f211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. He X, Ding J, Cheng X, Xiong M (2021) Hypoxia-related gene-based signature can evaluate the tumor immune microenvironment and predict the prognosis of colon adenocarcinoma patients. Int J Gen Med 14:9853–9862. https://doi.org/10.2147/IJGM.S343216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13:1031–1037. https://doi.org/10.1016/0896-6273(94)90043-4

    Article  PubMed  CAS  Google Scholar 

  89. Nakanishi S, Masu M, Bessho Y, Nakajima Y, Hayashi Y, Shigemoto R (1994) Molecular diversity of glutamate receptors and their physiological functions. EXS 71:71–80. https://doi.org/10.1007/978-3-0348-7330-7_8

    Article  PubMed  CAS  Google Scholar 

  90. Holscher C, Gigg J, O’Mara SM (1999) Metabotropic glutamate receptor activation and blockade: their role in long-term potentiation, learning and neurotoxicity. Neurosci Biobehav Rev 23:399–410. https://doi.org/10.1016/s0149-7634(98)00045-1

    Article  PubMed  CAS  Google Scholar 

  91. Bruno V, Battaglia G, Copani A, D’Onofrio M, Di Iorio P, De Blasi A, Melchiorri D, Flor PJ, Nicoletti F (2001) Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 21:1013–1033. https://doi.org/10.1097/00004647-200109000-00001

    Article  PubMed  CAS  Google Scholar 

  92. Motolese M, Mastroiacovo F, Cannella M, Bucci D, Gaglione A, Riozzi B, Lutjens R, Poli SM, Celanire S, Bruno V, Battaglia G, Nicoletti F (2015) Targeting type-2 metabotropic glutamate receptors to protect vulnerable hippocampal neurons against ischemic damage. Mol Brain 8:66. https://doi.org/10.1186/s13041-015-0158-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Taylor DL, Diemel LT, Cuzner ML, Pocock JM (2002) Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J Neurochem 82:1179–1191. https://doi.org/10.1046/j.1471-4159.2002.01062.x

    Article  PubMed  CAS  Google Scholar 

  94. Taylor DL, Jones F, Kubota ES, Pocock JM (2005) Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci 25:2952–2964. https://doi.org/10.1523/JNEUROSCI.4456-04.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kaushal V, Schlichter LC (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28:2221–2230. https://doi.org/10.1523/JNEUROSCI.5643-07.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Mowrey DD, Cui T, Jia Y, Ma D, Makhov AM, Zhang P, Tang P, Xu Y (2013) Open-channel structures of the human glycine receptor alpha1 full-length transmembrane domain. Structure 21:1897–1904. https://doi.org/10.1016/j.str.2013.07.014

    Article  PubMed  CAS  Google Scholar 

  97. van den Pol AN, Gorcs T (1988) Glycine and glycine receptor immunoreactivity in brain and spinal cord. J Neurosci 8:472–492

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fatima-Shad K, Barry PH (1993) Anion permeation in GABA- and glycine-gated channels of mammalian cultured hippocampal neurons. Proc Biol Sci 253:69–75. https://doi.org/10.1098/rspb.1993.0083

    Article  PubMed  CAS  Google Scholar 

  99. Baer K, Waldvogel HJ, Faull RL, Rees MI (2009) Localization of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review. Front Mol Neurosci 2:25. https://doi.org/10.3389/neuro.02.025.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Zhai PP, Xu LH, Yang JJ, Jiang ZL, Zhao GW, Sun L, Wang GH, Li X (2015) Reduction of inflammatory responses by L-serine treatment leads to neuroprotection in mice after traumatic brain injury. Neuropharmacology 95:1–11. https://doi.org/10.1016/j.neuropharm.2015.02.026

    Article  PubMed  CAS  Google Scholar 

  101. Lu Y, Zhang J, Ma B, Li K, Li X, Bai H, Yang Q, Zhu X, Ben J, Chen Q (2012) Glycine attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis in mice. Neurochem Int 61:649–658. https://doi.org/10.1016/j.neuint.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  102. Huang B, Xie Q, Lu X, Qian T, Li S, Zhu R, Yu W, Chen G, Chen Z, Xu X, Wang T, Li L (2016) GlyT1 inhibitor NFPS exerts neuroprotection via GlyR Alpha1 subunit in the rat model of transient focal cerebral ischaemia and reperfusion. Cell Physiol Biochem 38:1952–1962. https://doi.org/10.1159/000445556

    Article  PubMed  CAS  Google Scholar 

  103. Zhou F, Hongmin B, Xiang Z, Enyu L (2003) Changes of mGluR4 and the effects of its specific agonist L-AP4 in a rodent model of diffuse brain injury. J Clin Neurosci 10:684–688. https://doi.org/10.1016/j.jocn.2003.04.001

    Article  PubMed  CAS  Google Scholar 

  104. Faden AI, Ivanova SA, Yakovlev AG, Mukhin AG (1997) Neuroprotective effects of group III mGluR in traumatic neuronal injury. J Neurotrauma 14:885–895. https://doi.org/10.1089/neu.1997.14.885

    Article  PubMed  CAS  Google Scholar 

  105. Sperlagh B, Illes P (2014) P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 35:537–547. https://doi.org/10.1016/j.tips.2014.08.002

    Article  PubMed  CAS  Google Scholar 

  106. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067. https://doi.org/10.1152/physrev.00015.2002

    Article  PubMed  CAS  Google Scholar 

  107. Henshall DC, Diaz-Hernandez M, Miras-Portugal MT, Engel T (2013) P2X receptors as targets for the treatment of status epilepticus. Front Cell Neurosci 7:237. https://doi.org/10.3389/fncel.2013.00237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Yanagisawa D, Kitamura Y, Takata K, Hide I, Nakata Y, Taniguchi T (2008) Possible involvement of P2X7 receptor activation in microglial neuroprotection against focal cerebral ischemia in rats. Biol Pharm Bull 31:1121–1130. https://doi.org/10.1248/bpb.31.1121

    Article  PubMed  CAS  Google Scholar 

  109. D’Alimonte I, Ciccarelli R, Di Iorio P, Nargi E, Buccella S, Giuliani P, Rathbone MP, Jiang S, Caciagli F, Ballerini P (2007) Activation of P2X(7) receptors stimulates the expression of P2Y(2) receptor mRNA in astrocytes cultured from rat brain. Int J Immunopathol Pharmacol 20:301–316. https://doi.org/10.1177/039463200702000210

    Article  PubMed  CAS  Google Scholar 

  110. Tao T, Chen X, Zhou Y, Zheng Q, Gao S, Wang J, Ding P, Li X, Peng Z, Lu Y, Gao Y, Zhuang Z, Hang CH, Li W (2022) Continued P2X7 activation leads to mitochondrial fission and compromising microglial phagocytosis after subarachnoid haemorrhage. J Neurochem 163:419–437. https://doi.org/10.1111/jnc.15712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Chen S, Ma Q, Krafft PR, Hu Q, Rolland W 2nd, Sherchan P, Zhang J, Tang J, Zhang JH (2013) P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis 58:296–307. https://doi.org/10.1016/j.nbd.2013.06.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247–260. https://doi.org/10.1016/s0014-2999(02)01756-9

    Article  PubMed  CAS  Google Scholar 

  113. Del Puerto A, Fronzaroli-Molinieres L, Perez-Alvarez MJ, Giraud P, Carlier E, Wandosell F, Debanne D, Garrido JJ (2015) ATP-P2X7 receptor modulates axon initial segment composition and function in physiological conditions and brain injury. Cereb Cortex 25:2282–2294. https://doi.org/10.1093/cercor/bhu035

    Article  PubMed  Google Scholar 

  114. Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C (2010) P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58:730–740. https://doi.org/10.1002/glia.20958

    Article  PubMed  Google Scholar 

  115. Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian GF, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. Proc Natl Acad Sci U S A 106:12489–12493. https://doi.org/10.1073/pnas.0902531106

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mekala N, Gheewala N, Rom S, Sriram U, Persidsky Y (2022) Blocking of P2X7r reduces mitochondrial stress induced by alcohol and electronic cigarette exposure in brain microvascular endothelial cells. Antioxidants (Basel) 11:1328. https://doi.org/10.3390/antiox11071328

    Article  PubMed  CAS  Google Scholar 

  117. Yang F, Zhao K, Zhang X, Zhang J, Xu B (2016) ATP induces disruption of tight junction proteins via IL-1 beta-dependent MMP-9 activation of human blood-brain barrier in vitro. Neural Plast 2016:8928530. https://doi.org/10.1155/2016/8928530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Genaro-Mattos TC, Anderson A, Allen LB, Korade Z, Mirnics K (2019) Cholesterol biosynthesis and uptake in developing neurons. ACS Chem Neurosci 10:3671–3681. https://doi.org/10.1021/acschemneuro.9b00248

    Article  PubMed  CAS  Google Scholar 

  119. Kay AD, Day SP, Kerr M, Nicoll JA, Packard CJ, Caslake MJ (2003) Remodeling of cerebrospinal fluid lipoprotein particles after human traumatic brain injury. J Neurotrauma 20:717–723. https://doi.org/10.1089/089771503767869953

    Article  PubMed  Google Scholar 

  120. Zerenturk EJ, Sharpe LJ, Ikonen E, Brown AJ (2013) Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis. Prog Lipid Res 52:666–680. https://doi.org/10.1016/j.plipres.2013.09.002

    Article  PubMed  CAS  Google Scholar 

  121. Jansen M, Wang W, Greco D, Bellenchi GC, di Porzio U, Brown AJ, Ikonen E (2013) What dictates the accumulation of desmosterol in the developing brain? FASEB J 27:865–870. https://doi.org/10.1096/fj.12-211235

    Article  PubMed  CAS  Google Scholar 

  122. Dave AM, Peeples ES (2021) Cholesterol metabolism and brain injury in neonatal encephalopathy. Pediatr Res 90:37–44. https://doi.org/10.1038/s41390-020-01218-3

    Article  PubMed  Google Scholar 

  123. Nguyen AD, McDonald JG, Bruick RK, DeBose-Boyd RA (2007) Hypoxia stimulates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase through accumulation of lanosterol and hypoxia-inducible factor-mediated induction of insigs. J Biol Chem 282:27436–27446. https://doi.org/10.1074/jbc.M704976200

    Article  PubMed  CAS  Google Scholar 

  124. Dorszewska J, Adamczewska-Goncerzewicz Z (2000) Patterns of free and esterified sterol fractions of the cerebral white matter in severe and moderate experimental hypoxia. Med Sci Monit 6:227–231

    PubMed  CAS  Google Scholar 

  125. Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN (2009) Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease. J Neurochem 111:1275–1308. https://doi.org/10.1111/j.1471-4159.2009.06408.x

    Article  PubMed  CAS  Google Scholar 

  126. Djelti F, Braudeau J, Hudry E, Dhenain M, Varin J, Bieche I, Marquer C, Chali F, Ayciriex S, Auzeil N, Alves S, Langui D, Potier MC, Laprevote O, Vidaud M, Duyckaerts C, Miles R, Aubourg P, Cartier N (2015) CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain 138:2383–2398. https://doi.org/10.1093/brain/awv166

    Article  PubMed  Google Scholar 

  127. Brown AJ, Ikonen E, Olkkonen VM (2014) Cholesterol precursors: more than mere markers of biosynthesis. Curr Opin Lipidol 25:133–139. https://doi.org/10.1097/MOL.0000000000000038

    Article  PubMed  CAS  Google Scholar 

  128. Fernandes-Alnemri T, Takahashi A, Armstrong R, Krebs J, Fritz L, Tomaselli KJ, Wang L, Yu Z, Croce CM, Salveson G et al (1995) Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res 55:6045–6052

    PubMed  CAS  Google Scholar 

  129. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES, Shi Y (2001) Structural basis of caspase-7 inhibition by XIAP. Cell 104:769–780. https://doi.org/10.1016/s0092-8674(01)00272-0

    Article  PubMed  CAS  Google Scholar 

  130. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851. https://doi.org/10.1126/science.1115035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. McComb S, Chan PK, Guinot A, Hartmannsdottir H, Jenni S, Dobay MP, Bourquin JP, Bornhauser BC (2019) Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Sci Adv 5:eaau9433. https://doi.org/10.1126/sciadv.aau9433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Houde C, Banks KG, Coulombe N, Rasper D, Grimm E, Roy S, Simpson EM, Nicholson DW (2004) Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. J Neurosci 24:9977–9984. https://doi.org/10.1523/JNEUROSCI.3356-04.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci U S A 105:12815–12819. https://doi.org/10.1073/pnas.0707715105

    Article  PubMed  PubMed Central  Google Scholar 

  134. de la Cadena SG, Hernandez-Fonseca K, Camacho-Arroyo I, Massieu L (2014) Glucose deprivation induces reticulum stress by the PERK pathway and caspase-7- and calpain-mediated caspase-12 activation. Apoptosis 19:414–427. https://doi.org/10.1007/s10495-013-0930-7

    Article  PubMed  CAS  Google Scholar 

  135. Larner SF, McKinsey DM, Hayes RL, Wang KKW (2005) Caspase 7: increased expression and activation after traumatic brain injury in rats. J Neurochem 94:97–108. https://doi.org/10.1111/j.1471-4159.2005.03172.x

    Article  PubMed  CAS  Google Scholar 

  136. Harrison DC, Davis RP, Bond BC, Campbell CA, James MF, Parsons AA, Philpott KL (2001) Caspase mRNA expression in a rat model of focal cerebral ischemia. Brain Res Mol Brain Res 89:133–146. https://doi.org/10.1016/s0169-328x(01)00058-4

    Article  PubMed  CAS  Google Scholar 

  137. Zhang X, Alber S, Watkins SC, Kochanek PM, Marion DW, Graham SH, Clark RS (2006) Proteolysis consistent with activation of caspase-7 after severe traumatic brain injury in humans. J Neurotrauma 23:1583–1590. https://doi.org/10.1089/neu.2006.23.1583

    Article  PubMed  Google Scholar 

  138. Behrensdorf HA, van de Craen M, Knies UE, Vandenabeele P, Clauss M (2000) The endothelial monocyte-activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Lett 466:143–147. https://doi.org/10.1016/s0014-5793(99)01777-9

    Article  PubMed  CAS  Google Scholar 

  139. Eguchi R, Tone S, Suzuki A, Fujimori Y, Nakano T, Kaji K, Ohta T (2009) Possible involvement of caspase-6 and -7 but not caspase-3 in the regulation of hypoxia-induced apoptosis in tube-forming endothelial cells. Exp Cell Res 315:327–335. https://doi.org/10.1016/j.yexcr.2008.10.041

    Article  PubMed  CAS  Google Scholar 

  140. Riedl SJ, Fuentes-Prior P, Renatus M, Kairies N, Krapp S, Huber R, Salvesen GS, Bode W (2001) Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci U S A 98:14790–14795. https://doi.org/10.1073/pnas.221580098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7:988–994. https://doi.org/10.1038/sj.embor.7400795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Silke J, Ekert PG, Day CL, Hawkins CJ, Baca M, Chew J, Pakusch M, Verhagen AM, Vaux DL (2001) Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J 20:3114–3123. https://doi.org/10.1093/emboj/20.12.3114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Silke J, Hawkins CJ, Ekert PG, Chew J, Day CL, Pakusch M, Verhagen AM, Vaux DL (2002) The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J Cell Biol 157:115–124. https://doi.org/10.1083/jcb.200108085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Gao C, Yu H, Yan C, Zhao W, Liu Y, Zhang D, Li J, Liu N (2017) X-linked inhibitor of apoptosis inhibits apoptosis and preserves the blood-brain barrier after experimental subarachnoid hemorrhage. Sci Rep 7:44918. https://doi.org/10.1038/srep44918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Keane RW, Kraydieh S, Lotocki G, Alonso OF, Aldana P, Dietrich WD (2001) Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J Cereb Blood Flow Metab 21:1189–1198. https://doi.org/10.1097/00004647-200110000-00007

    Article  PubMed  CAS  Google Scholar 

  146. Kugler S, Straten G, Kreppel F, Isenmann S, Liston P, Bahr M (2000) The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ 7:815–824. https://doi.org/10.1038/sj.cdd.4400712

    Article  PubMed  CAS  Google Scholar 

  147. Jin Y, McEwen ML, Ghandour MS, Springer JE (2004) Overexpression of XIAP inhibits apoptotic cell death in an oligodendroglial cell line. Cell Mol Neurobiol 24:853–863. https://doi.org/10.1007/s10571-004-6924-9

    Article  PubMed  Google Scholar 

  148. Deng W, Fan C, Fang Y, Zhao Y, Wei Y, Li M, Teng J (2019) Role of XIAP gene overexpressed bone marrow mesenchymal stem cells in the treatment of cerebral injury in rats with cerebral palsy. Cancer Cell Int 19:273. https://doi.org/10.1186/s12935-019-0988-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study is supported by the Guangzhou Science and Technology Program (Grant 2019030011).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Qianling Chen, Lingyue Li and Luyao Xu contributed equally to this work. Material preparation was performed by Bin Yang and Yuebing Huang. Data collection and analysis were performed by Qianling Chen, Lingyue Li and Luyao Xu. The first draft of the manuscript was written by Qianling Chen. Dongfang Qiao and Xia Yue critically revised the work. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dongfang Qiao or Xia Yue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

414_2023_3039_Fig8_ESM.png

Fig. S1 Western blotting and immunohistochemical validation of three candidate biomarkers in pons. (A) Western blotting results. Candidate proteins were detected in triplicate and normalized to β-actin level (loading control) for quantitative analysis; (B-D) The scale bar in the Fig. is 100 μm. Quantitative scoring results of IHC analysis are shown as box plots. P < 0.05 for *, P < 0.01 for **compared with the Sham group (PNG 59680 kb)

High resolution image (TIF 174333 kb)

414_2023_3039_Fig9_ESM.png

Fig. S2 Western blotting and immunohistochemical validation of three candidate biomarkers in medulla oblongata. (A) Western blotting results. Candidate proteins were detected in triplicate and normalized to β-actin level (loading control) for quantitative analysis; (B-D) The scale bar in the Fig. is 100 μm. Quantitative scoring results of IHC analysis are shown as box plots. P < 0.05 for *, P < 0.01 for **compared with the Sham group (PNG 59650 kb)

High resolution image (TIF 174486 kb)

Supplementary file1 (DOCX 15 kb)

Supplementary file2 (DOCX 185 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Li, L., Xu, L. et al. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 138, 207–227 (2024). https://doi.org/10.1007/s00414-023-03039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03039-5

Keywords

Navigation