Skip to main content

Advertisement

Log in

Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies

  • Review
  • Published:
Forensic Science, Medicine and Pathology Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) has high morbidity and poor prognosis and imposes a serious socioeconomic burden. Traumatic axonal injury (TAI), which is one of the common pathological changes in the primary injury of TBI, is often caused by the external force to the head that causes the white matter bundles to generate shear stress and tension; resulting in tissue damage and leading to the cytoskeletal disorder. At present, the forensic pathological diagnosis of TAI-caused death is still a difficult problem. Most of the TAI biomarkers studied are used for the prediction, evaluation, and prognosis of TAI in the living state. The research subjects are mainly humans in the living state or model animals, which are not suitable for the postmortem diagnosis of TAI. In addition, there is still a lack of recognized indicators for the autopsy pathological diagnosis of TAI. Different diagnostic methods and markers have their limitations, and there is a lack of systematic research and summary of autopsy diagnostic markers of TAI. Therefore, this study mainly summarizes the pathological mechanism, common methods, techniques of postmortem diagnosis, and corresponding biomarkers of TAI, and puts forward the strategies for postmortem diagnosis of TAI for forensic cases with different survival times, which is of great significance to forensic pathological diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Pearl GS. Traumatic neuropathology. Clin Lab Med. 1998;18:39–64.

    Article  CAS  PubMed  Google Scholar 

  2. Pavlovic D, Pekic S, Stojanovic M, Popovic V. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary. 2019;22:270–82.

    Article  PubMed  Google Scholar 

  3. Rungruangsak K, Poriswanish N. Pathology of fatal diffuse brain injury in severe non-penetrating head trauma. J Forensic Leg Med. 2021;82: 102226.

    Article  PubMed  Google Scholar 

  4. Davceva N, Janevska V, Ilievski B, Spasevska L, Popeska Z. Dilemmas concerning the diffuse axonal injury as a clinicopathological entity in forensic medical practice. J Forensic Leg Med. 2012;19:413–8.

    Article  CAS  PubMed  Google Scholar 

  5. Smith DH, Hicks R, Povlishock JT. Therapy development for diffuse axonal injury. J Neurotrauma. 2013;30:307–23.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15:49–59.

    Article  CAS  PubMed  Google Scholar 

  7. Dolinak D, Smith C, Graham DI. Global hypoxia per se is an unusual cause of axonal injury. Acta Neuropathol. 2000;100:553–60.

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong RC, Mierzwa AJ, Sullivan GM, Sanchez MA. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury. Neuropharmacology. 2016;110:654–9.

    Article  CAS  PubMed  Google Scholar 

  9. Graham DI, Smith C, Reichard R, Leclercq PD, Gentleman SM. Trials and tribulations of using beta-amyloid precursor protein immunohistochemistry to evaluate traumatic brain injury in adults. Forensic Sci Int. 2004;146:89–96.

    Article  CAS  PubMed  Google Scholar 

  10. Su E, Bell M. Diffuse axonal injury. in: D. Laskowitz, and G. Grant, (Eds.), Translational Research in Traumatic Brain Injury, CRC Press/Taylor and Francis Group, Boca Raton (FL), 2016.

  11. Geddes JF, Whitwell HL, Graham DI. Traumatic axonal injury: practical issues for diagnosis in medicolegal cases. Neuropathol Appl Neurobiol. 2000;26:105–16.

    Article  CAS  PubMed  Google Scholar 

  12. Makino Y, Arai N, Hoshioka Y, Yoshida M, Kojima M, Horikoshi T, Mukai H, Iwase H. Traumatic axonal injury revealed by postmortem magnetic resonance imaging: a case report. Leg Med (Tokyo). 2019;36:9–16.

    Article  Google Scholar 

  13. Szecsi A, Danics K, Kondracs A, Szollosi Z. Traumatic axonal injury: a case report. Am J Forensic Med Pathol. 2020;41:211–2.

    Article  PubMed  Google Scholar 

  14. Pounder DJ. Shaken adult syndrome. Am J Forensic Med Pathol. 1997;18:321–4.

    Article  CAS  PubMed  Google Scholar 

  15. Al-Sarraj S, Fegan-Earl A, Ugbade A, Bodi I, Chapman R, Poole S, Swift B, Jerreat P, Cary N. Focal traumatic brain stem injury is a rare type of head injury resulting from assault: a forensic neuropathological study. J Forensic Leg Med. 2012;19:144–51.

    Article  PubMed  Google Scholar 

  16. Raghupathi R, Huh JW. Diffuse brain injury in the immature rat: evidence for an age-at-injury effect on cognitive function and histopathologic damage. J Neurotrauma. 2007;24:1596–608.

    Article  PubMed  Google Scholar 

  17. Tsitsopoulos PP, Abu Hamdeh S, Marklund N. Current opportunities for clinical monitoring of axonal pathology in traumatic brain injury. Front Neurol. 2017;8:599.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci. 2008;1142:266–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graham DI, Adams JH, Murray LS, Jennett B. Neuropathology of the vegetative state after head injury. Neuropsychol Rehabil. 2005;15:198–213.

    Article  CAS  PubMed  Google Scholar 

  20. Johnson VE, Stewart W, Smith DH. Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012;22:142–9.

    Article  CAS  PubMed  Google Scholar 

  21. Sundman MH, Hall EE, Chen NK. Examining the relationship between head trauma and neurodegenerative disease: a review of epidemiology, pathology and neuroimaging techniques. J Alzheimers Dis Parkinsonism. 2014;4:137.

    PubMed  PubMed Central  Google Scholar 

  22. Manivannan S, Makwana M, Ahmed AI, Zaben M. Profiling biomarkers of traumatic axonal injury: from mouse to man. Clin Neurol Neurosurg. 2018;171:6–20.

    Article  PubMed  Google Scholar 

  23. Bruggeman GF, Haitsma IK, Dirven CMF, Volovici V. Traumatic axonal injury (TAI): definitions, pathophysiology and imaging-a narrative review. Acta Neurochir (Wien). 2021;163:31–44.

    Article  Google Scholar 

  24. Ng HK, Mahaliyana RD, Poon WS. The pathological spectrum of diffuse axonal injury in blunt head trauma: assessment with axon and myelin strains. Clin Neurol Neurosurg. 1994;96:24–31.

    Article  CAS  PubMed  Google Scholar 

  25. Adams JH, Graham DI, Murray LS, Scott G. Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol. 1982;12:557–63.

    Article  CAS  PubMed  Google Scholar 

  26. Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT. Ultrastructural studies of diffuse axonal injury in humans. J Neurotrauma. 1994;11:173–86.

    Article  CAS  PubMed  Google Scholar 

  27. Gultekin SH, Smith TW. Diffuse axonal injury in craniocerebral trauma. A comparative histologic and immunohistochemical study. Arch Pathol Lab Med. 1994;118:168–71.

    CAS  PubMed  Google Scholar 

  28. Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol. 2012;233:364–72.

    Article  PubMed  Google Scholar 

  29. Tominaga I, Matsuo Y, Kato Y, Onaya M, Kasahara M, Yuzuriha T, Oda T, Kashima H, Wasada K. Prolonged traumatic coma caused by diffuse axonal lesions. Rev Neurol (Paris). 1991;147:658–62.

    CAS  Google Scholar 

  30. Onaya M, Tominaga I, Kato Y, Endo T, Nakamura T, Kasahara M, Oda T, Yuzuriha T, Kashima H. Diffuse axonal injury (DAI) in an autopsy case of head trauma with long survival. No To Shinkei. 1991;43:283–7.

    CAS  PubMed  Google Scholar 

  31. Wilkinson AE, Bridges LR, Sivaloganathan S. Correlation of survival time with size of axonal swellings in diffuse axonal injury. Acta Neuropathol. 1999;98:197–202.

    Article  CAS  PubMed  Google Scholar 

  32. Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: clues to axon and myelin repair capacity. Exp Neurol. 2016;275(Pt 3):328–33.

    Article  CAS  PubMed  Google Scholar 

  33. Choe MC. The Pathophysiology of Concussion. Curr Pain Headache Rep. 2016;20:42.

    Article  PubMed  Google Scholar 

  34. Gale SD, Johnson SC, Bigler ED, Blatter DD. Nonspecific white matter degeneration following traumatic brain injury. J Int Neuropsychol Soc. 1995;1:17–28.

    Article  CAS  PubMed  Google Scholar 

  35. Vik A, Kvistad KA, Skandsen T, Ingebrigtsen T. Diffuse axonal injury in traumatic brain injury. Tidsskr Nor Laegeforen. 2006;126:2940–4.

    PubMed  Google Scholar 

  36. Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem. 2010;112:1147–55.

    Article  CAS  PubMed  Google Scholar 

  37. Maxwell WL, McCreath BJ, Graham DI, Gennarelli TA. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. J Neurocytol. 1995;24:925–42.

    Article  CAS  PubMed  Google Scholar 

  38. Iwata A, Stys PK, Wolf JA, Chen XH, Taylor AG, Meaney DF, Smith DH. Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci. 2004;24:4605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buki A, Siman R, Trojanowski JQ, Povlishock JT. The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol. 1999;58:365–75.

    Article  CAS  PubMed  Google Scholar 

  40. Pettus EH, Christman CW, Giebel ML, Povlishock JT. Traumatically induced altered membrane permeability: its relationship to traumatically induced reactive axonal change. J Neurotrauma. 1994;11:507–22.

    Article  CAS  PubMed  Google Scholar 

  41. Siedler DG, Chuah MI, Kirkcaldie MT, Vickers JC, King AE. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front Cell Neurosci. 2014;8:429.

    Article  PubMed  PubMed Central  Google Scholar 

  42. von Reyn CR, Spaethling JM, Mesfin MN, Ma M, Neumar RW, Smith DH, Siman R, Meaney DF. Calpain mediates proteolysis of the voltage-gated sodium channel alpha-subunit. J Neurosci. 2009;29:10350–6.

    Article  Google Scholar 

  43. Court FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci. 2012;35:364–72.

    Article  CAS  PubMed  Google Scholar 

  44. Sievers C, Platt N, Perry VH, Coleman MP, Conforti L. Neurites undergoing Wallerian degeneration show an apoptotic-like process with Annexin V positive staining and loss of mitochondrial membrane potential. Neurosci Res. 2003;46:161–9.

    Article  CAS  PubMed  Google Scholar 

  45. Barron KD. The axotomy response. J Neurol Sci. 2004;220:119–21.

    Article  PubMed  Google Scholar 

  46. Greer JE, McGinn MJ, Povlishock JT. Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population. J Neurosci. 2011;31:5089–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang J, Fox MA, Povlishock JT. Diffuse traumatic axonal injury in the optic nerve does not elicit retinal ganglion cell loss. J Neuropathol Exp Neurol. 2013;72:768–81.

    Article  PubMed  Google Scholar 

  48. Bonatz H, Rohrig S, Mestres P, Meyer M, Giehl KM. An axotomy model for the induction of death of rat and mouse corticospinal neurons in vivo. J Neurosci Methods. 2000;100:105–15.

    Article  CAS  PubMed  Google Scholar 

  49. Barron KD, Dentinger MP, Popp AJ, Mankes R. Neurons of layer Vb of rat sensorimotor cortex atrophy but do not die after thoracic cord transection. J Neuropathol Exp Neurol. 1988;47:62–74.

    Article  CAS  PubMed  Google Scholar 

  50. Mandolesi G, Madeddu F, Bozzi Y, Maffei L, Ratto GM. Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J. 2004;18:1934–6.

    Article  CAS  PubMed  Google Scholar 

  51. Weber JT. Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res. 2004;1:151–71.

    Article  PubMed  Google Scholar 

  52. Singleton RH, Zhu J, Stone JR, Povlishock JT. Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death. J Neurosci. 2002;22:791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hill CS, Coleman MP, Menon DK. Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 2016;39:311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bertozzi G, Maglietta F, Sessa F, Scoto E, Cipolloni L, Di Mizio G, Salerno M, Pomara C. Traumatic brain injury: a forensic approach: a literature review. Curr Neuropharmacol. 2020;18:538–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rongchao S, Shudong Y, Zhiyi Z. Pathological and immunohistochemical study of lethal primary brain stem injuries. Diagn Pathol. 2012;7:54.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pittella JE, Gusmao SN. Diffuse vascular injury in fatal road traffic accident victims: its relationship to diffuse axonal injury. J Forensic Sci. 2003;48:626–30.

    Article  PubMed  Google Scholar 

  57. Ogata M, Tsuganezawa O. Neuron-specific enolase as an effective immunohistochemical marker for injured axons after fatal brain injury. Int J Legal Med. 1999;113:19–25.

    Article  CAS  PubMed  Google Scholar 

  58. Gentleman SM, Roberts GW, Gennarelli TA, Maxwell WL, Adams JH, Kerr S, Graham DI. Axonal injury: a universal consequence of fatal closed head injury? Acta Neuropathol. 1995;89:537–43.

    Article  CAS  PubMed  Google Scholar 

  59. Kubo S, Kitamura O, Orihara Y, Ogata M, Tokunaga I, Nakasono I. Immunohistochemical diagnosis and significance of forensic neuropathological changes. J Med Invest. 1998;44:109–19.

    CAS  PubMed  Google Scholar 

  60. Yamaki T, Murakami N, Iwamoto Y, Nakagawa Y, Ueda S, Irizawa Y, Komura S, Matsuura T. Pathological study of diffuse axonal injury patients who died shortly after impact. Acta Neurochir (Wien). 1992;119:153–8.

    Article  CAS  Google Scholar 

  61. Rahaman P, Del Bigio MR. Histology of brain trauma and hypoxia-ischemia. Acad Forensic Pathol. 2018;8:539–54.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pilz P. Axonal injury in head injury. Acta Neurochir Suppl (Wien). 1983;32:119–23.

    Article  CAS  Google Scholar 

  63. Povlishock JT, Kontos HA. Continuing axonal and vascular change following experimental brain trauma. Cent Nerv Syst Trauma. 1985;2:285–98.

    Article  CAS  PubMed  Google Scholar 

  64. Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett. 1993;160:139–44.

    Article  CAS  PubMed  Google Scholar 

  65. Chun KA. Beta-amyloid imaging in dementia. Yeungnam Univ J Med. 2018;35:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hortobágyi T, Wise S, Hunt N, Cary N, Djurovic V, Fegan-Earl A, Shorrock K, Rouse D, Al-Sarraj S. Traumatic axonal damage in the brain can be detected using beta-APP immunohistochemistry within 35 min after head injury to human adults. Neuropathol Appl Neurobiol. 2007;33:226–37.

    Article  PubMed  Google Scholar 

  67. Morrison C, MacKenzie JM. Axonal injury in head injuries with very short survival times. Neuropathol Appl Neurobiol. 2008;34:124–5.

    Article  CAS  PubMed  Google Scholar 

  68. Davceva N, Janevska V, Ilievski B, Petrushevska G, Popeska Z. The occurrence of acute subdural haematoma and diffuse axonal injury as two typical acceleration injuries. J Forensic Leg Med. 2012;19:480–4.

    Article  CAS  PubMed  Google Scholar 

  69. Oehmichen M, Meissner C, Schmidt V, Pedal I, Konig HG. Pontine axonal injury after brain trauma and nontraumatic hypoxic-ischemic brain damage. Int J Legal Med. 1999;112:261–7.

    Article  CAS  PubMed  Google Scholar 

  70. MacKenzie JM. Axonal Injury in Stroke: A Forensic Neuropathology Perspective. Am J Forensic Med Pathol. 2015;36:172–5.

    Article  PubMed  Google Scholar 

  71. Lambri M, Djurovic V, Kibble M, Cairns N, Al-Sarraj S. Specificity and sensitivity of betaAPP in head injury. Clin Neuropathol. 2001;20:263–71.

    CAS  PubMed  Google Scholar 

  72. Oehmichen M, Meissner C, von Wurmb-Schwark N, Schwark T. Methodical approach to brain hypoxia/ischemia as a fundamental problem in forensic neuropathology. Leg Med (Tokyo). 2003;5:190–201.

    Article  CAS  Google Scholar 

  73. Reichard RR, Smith C, Graham DI. The significance of beta-APP immunoreactivity in forensic practice. Neuropathol Appl Neurobiol. 2005;31:304–13.

    Article  CAS  PubMed  Google Scholar 

  74. Hayashi T, Ago K, Ago M, Ogata M. Two patterns of beta-amyloid precursor protein (APP) immunoreactivity in cases of blunt head injury. Leg Med (Tokyo). 2009;11(Suppl 1):S171–3.

    Article  Google Scholar 

  75. Hayashi T, Ago K, Nakamae T, Higo E, Ogata M. Two different immunostaining patterns of beta-amyloid precursor protein (APP) may distinguish traumatic from nontraumatic axonal injury. Int J Legal Med. 2015;129:1085–90.

    Article  PubMed  Google Scholar 

  76. Weber MT, Arena JD, Xiao R, Wolf JA, Johnson VE. CLARITY reveals a more protracted temporal course of axon swelling and disconnection than previously described following traumatic brain injury. Brain Pathol. 2019;29:437–50.

    Article  CAS  PubMed  Google Scholar 

  77. Johnson VE, Stewart W, Weber MT, Cullen DK, Siman R, Smith DH. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol. 2016;131:115–35.

    Article  CAS  PubMed  Google Scholar 

  78. Nolan AL, Petersen C, Iacono D, Mac Donald CL, Mukherjee P, van der Kouwe A, Jain S, Stevens A, Diamond BR, Wang R, Markowitz AJ, Fischl B, Perl DP, Manley GT, Keene CD, Diaz-Arrastia R, Edlow BL, Investigators T-T. Tractography-pathology correlations in traumatic brain injury: a TRACK-TBI study. J Neurotrauma. 2021;38:1620–31.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer’s disease. Brain Res Bull. 2018;140:162–8.

    Article  CAS  PubMed  Google Scholar 

  80. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nixon RA, Sihag RK. Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci. 1991;14:501–6.

    Article  CAS  PubMed  Google Scholar 

  82. Yaghmai A, Povlishock J. Traumatically induced reactive change as visualized through the use of monoclonal antibodies targeted to neurofilament subunits. J Neuropathol Exp Neurol. 1992;51:158–76.

    Article  CAS  PubMed  Google Scholar 

  83. Grady MS, McLaughlin MR, Christman CW, Valadka AB, Fligner CL, Povlishock JT. The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans. J Neuropathol Exp Neurol. 1993;52:143–52.

    Article  CAS  PubMed  Google Scholar 

  84. Onaya M. Neuropathological investigation of cerebral white matter lesions caused by closed head injury. Neuropathology. 2002;22:243–51.

    Article  PubMed  Google Scholar 

  85. Hausmann R, Riess R, Fieguth A, Betz P. Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med. 2000;113:70–5.

    Article  CAS  PubMed  Google Scholar 

  86. Schmechel D, Marangos PJ, Brightman M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978;276:834–6.

    Article  CAS  PubMed  Google Scholar 

  87. Schmechel D, Marangos PJ, Zis AP, Brightman M, Goodwin FK. Brain enolases as specific markers of neuronal and glial cells. Science. 1978;199:313–5.

    Article  CAS  PubMed  Google Scholar 

  88. Brady ST, Lasek RJ. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell. 1981;23:515–23.

    Article  CAS  PubMed  Google Scholar 

  89. Olczak M, Kwiatkowska M, Niderla-Bielinska J, Chutoranski D, Tarka S, Wierzba-Bobrowicz T. Brain-originated peptides as possible biochemical markers of traumatic brain injury in cerebrospinal fluid post-mortem examination. Folia Neuropathol. 2018;56:97–103.

    Article  PubMed  Google Scholar 

  90. Olczak M, Niderla-Bielinska J, Kwiatkowska M, Samojlowicz D, Tarka S, Wierzba-Bobrowicz T. Tau protein (MAPT) as a possible biochemical marker of traumatic brain injury in postmortem examination. Forensic Sci Int. 2017;280:1–7.

    Article  CAS  PubMed  Google Scholar 

  91. Bohnert S, Reinert C, Trella S, Schmitz W, Ondruschka B, Bohnert M. Metabolomics in postmortem cerebrospinal fluid diagnostics: a state-of-the-art method to interpret central nervous system-related pathological processes. Int J Legal Med. 2021;135:183–91.

    Article  PubMed  Google Scholar 

  92. Bohnert S, Ondruschka B, Bohnert M, Schuhmann MK, Monoranu CM. Post-mortem cerebrospinal fluid diagnostics: cytology and immunocytochemistry method suitable for routine use to interpret pathological processes in the central nervous system. Int J Legal Med. 2019;133:1141–6.

    Article  PubMed  Google Scholar 

  93. Ondruschka B, Sieber M, Kirsten H, Franke H, Dressler J. Measurement of cerebral biomarkers proving traumatic brain injuries in post-mortem body fluids. J Neurotrauma. 2018;35:2044–55.

    Article  PubMed  Google Scholar 

  94. Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;31:2670–7.

    Article  CAS  PubMed  Google Scholar 

  95. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.

    Article  PubMed  Google Scholar 

  96. Pardridge WM. Blood-brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. Adv Exp Med Biol. 2002;513:397–430.

    Article  CAS  PubMed  Google Scholar 

  97. Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, Nicocia G, Buemi M. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhao JB, Chen HD, Zhang MJ, Zhang YH, Qian CF, Liu Y, He SX, Zou YJ, Liu HY. Early expression of serum neutrophil gelatinase-associated lipocalin (NGAL) is associated with neurological severity immediately after traumatic brain injury. J Neurol Sci. 2016;368:392–8.

    Article  CAS  PubMed  Google Scholar 

  99. Sieber M, Dressler J, Franke H, Pohlers D, Ondruschka B. Post-mortem biochemistry of NSE and S100B: a supplemental tool for detecting a lethal traumatic brain injury? J Forensic Leg Med. 2018;55:65–73.

    Article  PubMed  Google Scholar 

  100. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33:637–68.

    Article  CAS  PubMed  Google Scholar 

  101. Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;85:1373–80.

    Article  CAS  PubMed  Google Scholar 

  102. Gao F, Harris DN, Sapsed-Byrne S, Sharp S. Neurone-specific enolase and Sangtec 100 assays during cardiac surgery: part iii–dose haemolysis affect their accuracy? Perfusion. 1997;12:171–7.

    Article  CAS  PubMed  Google Scholar 

  103. Zwirner J, Bohnert S, Franke H, Garland J, Hammer N, Mobius D, Tse R, Ondruschka B. Assessing protein biomarkers to detect lethal acute traumatic brain injuries in cerebrospinal fluid. Biomolecules. 2021;11.

  104. Bohnert S, Wirth C, Schmitz W, Trella S, Monoranu CM, Ondruschka B, Bohnert M. Myelin basic protein and neurofilament H in postmortem cerebrospinal fluid as surrogate markers of fatal traumatic brain injury. Int J Legal Med. 2021;135:1525–35.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zetterberg H, Hietala MA, Jonsson M, Andreasen N, Styrud E, Karlsson I, Edman A, Popa C, Rasulzada A, Wahlund LO, Mehta PD, Rosengren L, Blennow K, Wallin A. Neurochemical aftermath of amateur boxing. Arch Neurol. 2006;63:1277–80.

    Article  PubMed  Google Scholar 

  106. Shahim P, Gren M, Liman V, Andreasson U, Norgren N, Tegner Y, Mattsson N, Andreasen N, Ost M, Zetterberg H, Nellgard B, Blennow K. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci Rep. 2016;6:36791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zemlan FP, Rosenberg WS, Luebbe PA, Campbell TA, Dean GE, Weiner NE, Cohen JA, Rudick RA, Woo D. Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins. J Neurochem. 1999;72:741–50.

    Article  CAS  PubMed  Google Scholar 

  108. Shahim P, Tegner Y, Wilson DH, Randall J, Skillback T, Pazooki D, Kallberg B, Blennow K, Zetterberg H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014;71:684–92.

    Article  PubMed  Google Scholar 

  109. Olczak M, Poniatowski LA, Niderla-Bielinska J, Kwiatkowska M, Chutoranski D, Tarka S, Wierzba-Bobrowicz T. Concentration of microtubule associated protein tau (MAPT) in urine and saliva as a potential biomarker of traumatic brain injury in relationship with blood-brain barrier disruption in postmortem examination. Forensic Sci Int. 2019;301:28–36.

    Article  CAS  PubMed  Google Scholar 

  110. Tschui J, Jackowski C, Schwendener N, Schyma C, Zech WD. Post-mortem CT and MR brain imaging of putrefied corpses. Int J Legal Med. 2016;130:1061–8.

    Article  CAS  PubMed  Google Scholar 

  111. Chatzaraki V, Bolliger SA, Thali MJ, Eggert S, Ruder TD. Unexpected brain finding in pre-autopsy postmortem CT. Forensic Sci Med Pathol. 2017;13:367–71.

    Article  PubMed  Google Scholar 

  112. Bogoslovsky T, Wilson D, Chen Y, Hanlon D, Gill J, Jeromin A, Song L, Moore C, Gong Y, Kenney K, Diaz-Arrastia R. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid beta up to 90 days after traumatic brain injury. J Neurotrauma. 2017;34:66–73.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Mochizuki K, Ochi H, Ogura Y, Iino M, Kuroki H, Matoba R. A case of diffuse axonal injury in violent death. Leg Med (Tokyo). 2009;11(Suppl 1):S518–9.

    Article  Google Scholar 

  114. Chen XH, Johnson VE, Uryu K, Trojanowski JQ, Smith DH. A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol. 2009;19:214–23.

    Article  PubMed  Google Scholar 

  115. Oehmichen M, Walter T, Meissner C, Friedrich HJ. Time course of cortical hemorrhages after closed traumatic brain injury: statistical analysis of posttraumatic histomorphological alterations. J Neurotrauma. 2003;20:87–103.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank American Journal Experts for their linguistic assistance during the preparation of this manuscript.

Funding

This study is supported by the Guangzhou Science and Technology Program (Grant 2019030011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Li, Xia Yue or Dongfang Qiao.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Chen, X., Xu, L. et al. Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies. Forensic Sci Med Pathol 18, 530–544 (2022). https://doi.org/10.1007/s12024-022-00522-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-022-00522-0

Keywords

Navigation