Skip to main content

Advertisement

Log in

Differential impact of cold and hot tea extracts on tyrosine phosphatases regulating insulin receptor activity: a focus on PTP1B and LMW-PTP

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The impact of tea constituents on the insulin-signaling pathway as well as their antidiabetic activity are still debated questions. Previous studies suggested that some tea components act as Protein Tyrosine Phosphatase 1B (PTP1B) inhibitors. However, their nature and mechanism of action remain to be clarified. This study aims to evaluate the effects of both tea extracts and some of their constituents on two main negative regulators of the insulin-signaling pathway, Low-Molecular-Weight Protein Tyrosine Phosphatase (LMW-PTP) and PTP1B.

Methods

The effects of cold and hot tea extracts on the enzyme activity were evaluated through in vitro assays. Active components were identified using gas chromatography—mass spectrometry (GC–MS) analysis. Finally, the impact of both whole tea extracts and specific active tea components on the insulin-signaling pathway was evaluated in liver and muscle cells.

Results

We found that both cold and hot tea extracts inhibit LMW-PTP and PTP1B, even if with a different mechanism of action. We identified galloyl moiety-bearing catechins as the tea components responsible for this inhibition. Specifically, kinetic and docking analyses revealed that epigallocatechin gallate (EGCG) is a mixed-type non-competitive inhibitor of PTP1B, showing an IC50 value in the nanomolar range. Finally, in vitro assays confirmed that EGCG acts as an insulin-sensitizing agent and that the chronic treatment of liver cells with tea extracts results in an enhancement of the insulin receptor levels and insulin sensitivity.

Conclusion

Altogether, our data suggest that tea components are able to regulate both protein levels and activation status of the insulin receptor by modulating the activity of PTP1B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saeedi P, Petersohn I, Salpea P, et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

  2. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98. https://doi.org/10.1038/nrendo.2017.151

    Article  PubMed  Google Scholar 

  3. Wu Y, Ding Y, Tanaka Y, Zhang W (2014) Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci 11:1185–1200. https://doi.org/10.7150/ijms.10001

    Article  PubMed  PubMed Central  Google Scholar 

  4. DeFronzo RA (2009) From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–795. https://doi.org/10.2337/db09-9028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meneses M, Silva B, Sousa M et al (2015) Antidiabetic drugs: mechanisms of action and potential outcomes on cellular metabolism. Curr Pharm Des 21:3606–3620. https://doi.org/10.2174/1381612821666150710145753

    Article  CAS  PubMed  Google Scholar 

  6. Bailey CJ, Day C (2018) Treatment of type 2 diabetes: future approaches. Br Med Bull 126:123–137. https://doi.org/10.1093/brimed/ldy013

    Article  CAS  PubMed  Google Scholar 

  7. Maffi P, Secchi A (2017) The Burden of Diabetes: Emerging Data. In: Developments in Ophthalmology. pp 1–5

  8. Ley SH, Hamdy O, Mohan V, Hu FB (2014) Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383:1999–2007. https://doi.org/10.1016/S0140-6736(14)60613-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karri S, Sharma S, Hatware K, Patil K (2019) Natural anti-obesity agents and their therapeutic role in management of obesity: a future trend perspective. Biomed Pharmacother 110:224–238. https://doi.org/10.1016/j.biopha.2018.11.076

    Article  CAS  PubMed  Google Scholar 

  10. Goyal S, Gupta N, Chatterjee S, Nimesh S (2016) Natural plant extracts as potential therapeutic agents for the treatment of cancer. Curr Top Med Chem 17:96–106. https://doi.org/10.2174/1568026616666160530154407

    Article  CAS  Google Scholar 

  11. Dou QP (2019) Tea in health and disease. Nutrients 11:929. https://doi.org/10.3390/nu11040929

    Article  CAS  PubMed Central  Google Scholar 

  12. Fu Q-Y, Li Q-S, Lin X-M et al (2017) Antidiabetic effects of tea. Molecules 22:849. https://doi.org/10.3390/molecules22050849

    Article  CAS  PubMed Central  Google Scholar 

  13. Ma J, Li Z, Xing S et al (2011) Tea contains potent inhibitors of tyrosine phosphatase PTP1B. Biochem Biophys Res Commun 407:98–102. https://doi.org/10.1016/j.bbrc.2011.02.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuban-Jankowska A, Kostrzewa T, Musial C, et al (2020) Green Tea Catechins Induce Inhibition of PTP1B Phosphatase in Breast Cancer Cells with Potent Anti-Cancer Properties: In Vitro Assay, Molecular Docking, and Dynamics Studies. Antioxidants 9:1208. https://doi.org/10.3390/antiox9121208

  15. Eleftheriou P, Geronikaki A, Petrou A (2019) PTP1b inhibition, a promising approach for the treatment of diabetes type II. Curr Top Med Chem 19:246–263. https://doi.org/10.2174/1568026619666190201152153

    Article  CAS  PubMed  Google Scholar 

  16. Stanford SM, Aleshin AE, Zhang V et al (2017) Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase. Nat Chem Biol 13:624–632. https://doi.org/10.1038/nchembio.2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perva-Uzunalić A, Škerget M, Knez Ž et al (2006) Extraction of active ingredients from green tea (Camellia sinensis): extraction efficiency of major catechins and caffeine. Food Chem 96:597–605. https://doi.org/10.1016/j.foodchem.2005.03.015

    Article  CAS  Google Scholar 

  18. Lori G, Cecchi L, Mulinacci N et al (2019) Honey extracts inhibit PTP1B, upregulate insulin receptor expression, and enhance glucose uptake in human HepG2 cells. Biomed Pharmacother 113:108752. https://doi.org/10.1016/j.biopha.2019.108752

    Article  CAS  PubMed  Google Scholar 

  19. Ottanà R, Paoli P, Cappiello M, et al (2021) In Search for Multi-Target Ligands as Potential Agents for Diabetes Mellitus and Its Complications-A Structure-Activity Relationship Study on Inhibitors of Aldose Reductase and Protein Tyrosine Phosphatase 1B. Molecules 26:. https://doi.org/10.3390/molecules26020330

  20. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera?A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  22. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. "Protein Eng Des Sel 8:127–134. https://doi.org/10.1093/protein/8.2.127

  23. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786. https://doi.org/10.1021/ci200227u

    Article  CAS  PubMed  Google Scholar 

  24. Shibata E, Kanno T, Tsuchiya A et al (2013) Free fatty acids inhibit protein tyrosine phosphatase 1B and activate Akt. Cell Physiol Biochem 32:871–879. https://doi.org/10.1159/000354489

    Article  CAS  PubMed  Google Scholar 

  25. Zhao BT, Nguyen DH, Le DD et al (2018) Protein tyrosine phosphatase 1B inhibitors from natural sources. Arch Pharm Res 41:130–161. https://doi.org/10.1007/s12272-017-0997-8

    Article  CAS  PubMed  Google Scholar 

  26. Puius YA, Zhao Y, Sullivan M et al (1997) Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci USA 94:13420–13425. https://doi.org/10.1073/pnas.94.25.13420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tuomilehto J, Lindström J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350. https://doi.org/10.1056/NEJM200105033441801

    Article  CAS  PubMed  Google Scholar 

  28. Mirmiran P (2014) Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: a review. World J Diabetes 5:267–281. https://doi.org/10.4239/wjd.v5.i3.267

    Article  PubMed  PubMed Central  Google Scholar 

  29. Serafini M, Del Rio D, Yao DN, et al (2011) Health Benefits of Tea

  30. Xing L, Zhang H, Qi R et al (2019) Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem 67:1029–1043. https://doi.org/10.1021/acs.jafc.8b06146

    Article  CAS  PubMed  Google Scholar 

  31. Wang R, Zhou W, Jiang X (2008) Reaction Kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J Agric Food Chem 56:2694–2701. https://doi.org/10.1021/jf0730338

    Article  CAS  PubMed  Google Scholar 

  32. Fan F-Y, Shi M, Nie Y et al (2016) Differential behaviors of tea catechins under thermal processing: formation of non-enzymatic oligomers. Food Chem 196:347–354. https://doi.org/10.1016/j.foodchem.2015.09.056

    Article  CAS  PubMed  Google Scholar 

  33. Kuzuhara T, Suganuma M, Fujiki H (2008) Green tea catechin as a chemical chaperone in cancer prevention. Cancer Lett 261:12–20. https://doi.org/10.1016/j.canlet.2007.10.037

    Article  CAS  PubMed  Google Scholar 

  34. Wiesmann C, Barr KJ, Kung J et al (2004) Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11:730–737. https://doi.org/10.1038/nsmb803

    Article  CAS  PubMed  Google Scholar 

  35. Clifford MN, van der Hooft JJ, Crozier A (2013) Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am J Clin Nutr 98:1619S-1630S. https://doi.org/10.3945/ajcn.113.058958

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y-K, Cheung C, Reuhl KR et al (2011) Effects of green tea polyphenol (−)-epigallocatechin-3-gallate on newly developed high-fat/western-style diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem 59:11862–11871. https://doi.org/10.1021/jf2029016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bose M, Lambert JD, Ju J et al (2008) The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat–fed mice. J Nutr 138:1677–1683. https://doi.org/10.1093/jn/138.9.1677

    Article  CAS  PubMed  Google Scholar 

  38. Molinaro A, Becattini B, Solinas G (2020) Insulin signaling and glucose metabolism in different hepatoma cell lines deviate from hepatocyte physiology toward a convergent aberrant phenotype. Sci Rep 10:12031. https://doi.org/10.1038/s41598-020-68721-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong CY, Al-Salami H, Dass CR (2020) C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 72:1667–1693. https://doi.org/10.1111/jphp.13359

    Article  CAS  PubMed  Google Scholar 

  40. Collins QF, Liu H-Y, Pi J et al (2007) Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J Biol Chem 282:30143–30149. https://doi.org/10.1074/jbc.M702390200

    Article  CAS  PubMed  Google Scholar 

  41. Wolfram S, Raederstorff D, Preller M et al (2006) Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 136:2512–2518. https://doi.org/10.1093/jn/136.10.2512

    Article  CAS  PubMed  Google Scholar 

  42. Crettaz M, Kahn CR (1984) Insulin receptor regulation and desensitization in rat hepatoma cells: concomitant changes in receptor number and in binding affinity. Diabetes 33:477–485. https://doi.org/10.2337/diab.33.5.477

    Article  CAS  PubMed  Google Scholar 

  43. Yang W-M, Jeong H-J, Park S-Y, Lee W (2014) Saturated fatty acid-induced miR-195 impairs insulin signaling and glycogen metabolism in HepG2 cells. FEBS Lett 588:3939–3946. https://doi.org/10.1016/j.febslet.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  44. Yang W-M, Jeong H-J, Park S-W, Lee W (2015) Obesity-induced miR-15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes. Mol Nutr Food Res 59:2303–2314. https://doi.org/10.1002/mnfr.201500107

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Zhong Y, Cheng Q, et al (2020) miR-378b Regulates Insulin Sensitivity by Targeting Insulin Receptor and p110α in Alcohol-Induced Hepatic Steatosis. Front Pharmacol 11:. https://doi.org/10.3389/fphar.2020.00717

  46. Na B, Nguyen P-H, Zhao B-T et al (2016) Protein tyrosine phosphatase 1B (PTP1B) inhibitory activity and glucosidase inhibitory activity of compounds isolated from Agrimonia pilosa. Pharm Biol 54:474–480. https://doi.org/10.3109/13880209.2015.1048372

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Sasaki T, Li W et al (2018) Identification of caffeoylquinic acid derivatives as natural protein tyrosine phosphatase 1B inhibitors from Artemisia princeps. Bioorg Med Chem Lett 28:1194–1197. https://doi.org/10.1016/j.bmcl.2018.02.052

    Article  CAS  PubMed  Google Scholar 

  48. Lipchock JM, Hendrickson HP, Douglas BB et al (2017) Characterization of Protein tyrosine phosphatase 1B inhibition by chlorogenic acid and cichoric acid. Biochemistry 56:96–106. https://doi.org/10.1021/acs.biochem.6b01025

    Article  CAS  PubMed  Google Scholar 

  49. Dixit M, Tripathi BK, Srivastava AK, Goel A (2005) Synthesis of functionalized acetophenones as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 15:3394–3397. https://doi.org/10.1016/j.bmcl.2005.05.024

    Article  CAS  PubMed  Google Scholar 

  50. Haftchenary S, Jouk AO, Aubry I et al (2015) Identification of bidentate salicylic acid inhibitors of PTP1B. ACS Med Chem Lett 6:982–986. https://doi.org/10.1021/acsmedchemlett.5b00171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shrestha S, Bhattarai BR, Lee K-H, Cho H (2007) Mono- and disalicylic acid derivatives: PTP1B inhibitors as potential anti-obesity drugs. Bioorg Med Chem 15:6535–6548. https://doi.org/10.1016/j.bmc.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  52. Barik SK, Russell WR, Dehury B et al (2019) Dietary phenolics other than anthocyanins inhibit PTP1B; an in vitro and in silico validation. Proc Nutr Soc 78:E25. https://doi.org/10.1017/S0029665119000296

    Article  Google Scholar 

Download references

Acknowledgements

Molecular graphics and analyses were performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.

Funding

This work was supported by University of Florence and by Associazione Italiana per la Ricerca sul Cancro (AIRC, project “Assaying tumor metabolic deregulation in live cells”, project code 19515).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LP, PP; methodology: SL, MVV; data curation: MG, MP; formal analysis and investigation: SL, MP, MVV, EP; visualization. EP, AC; writing—original draft preparation: PP; writing—review and editing: all the authors; funding acquisition: PP; resources: AC, LP, PP; supervision: PC, PP.

Corresponding author

Correspondence to Elisa Pardella.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3876 KB)

Supplementary file2 (PDF 199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genovese, M., Luti, S., Pardella, E. et al. Differential impact of cold and hot tea extracts on tyrosine phosphatases regulating insulin receptor activity: a focus on PTP1B and LMW-PTP. Eur J Nutr 61, 1905–1918 (2022). https://doi.org/10.1007/s00394-021-02776-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02776-w

Keywords

Navigation