Skip to main content
Log in

The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this research, the natural frequency responses of joined hemispherical–cylindrical–conical shells made of composite three-phase materials have been dealt with in the framework of First-Order Shear Deformation Theory (FOSDT). The joined hemispherical–cylindrical–conical shells are assumed to be made of hybrid porous nanocomposite material with three phases including a matrix of epoxy, macroscale carbon fiber, and nanoscale 3D Graphene Foams (3GFs). For getting the equivalent mechanical properties of the Hybrid Matrix (HM) including polymer epoxy and 3GFs, the well-known rule of the mixture is used. In addition, the effect of porosity throughout the HM is considered using two novel and one well-known porosity distribution pattern. Moreover, the HM is reinforced with transversely isotropic macroscale carbon fibers in which the Halpin–Tsai scheme is used for multiscale homogenization procedure. The governing equations of motion associated with hybrid porous nanocomposite joined hemispherical–cylindrical–conical structures are figured out by implementing Donnell-type shell formulation and Hamilton’s approach. Moreover, an efficient and well-known semi-analytical solution method entitled Generalized Differential Quadrature Method (GDQM) is employed to solve the governing differential equations. To verify the proposed formulation some well-known benchmarks, especially those are composed of homogenous materials have been analyzed, and a good agreement has been achieved. Besides, some other new and applicable problems are considered to investigate the effects of different parameters including various boundary conditions, patterns of porosity distributions, and geometric properties of structure on the vibration behavior of joined shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mashat DS, Carrera E, Zenkour AM, Al Khateeb SA (2014) Use of axiomatic/asymptotic approach to evaluate various refined theories for sandwich shells. Compos Struct 109:139–149. https://doi.org/10.1016/j.compstruct.2013.10.046

    Article  Google Scholar 

  2. Kamarian S, Salim M, Dimitri R, Tornabene F (2016) Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes. Int J Mech Sci 108–109:157–165. https://doi.org/10.1016/j.ijmecsci.2016.02.006

    Article  Google Scholar 

  3. Heydarpour Y, Malekzadeh P, Dimitri R, Tornabene F (2020) Thermoelastic analysis of rotating multilayer FG-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme. Compos Struct 235:111707. https://doi.org/10.1016/j.compstruct.2019.111707

    Article  Google Scholar 

  4. Dewangan HC, Panda SK (2020) Numerical thermoelastic eigenfrequency prediction of damaged layered shell panel with concentric/eccentric cutout and corrugated (TD/TID) properties. Eng Comput 1:3. https://doi.org/10.1007/s00366-020-01199-1

    Article  Google Scholar 

  5. Khadimallah MA, Hussain M, Khedher KM, et al (2020) Backward and forward rotating of FG ring support cylindrical shells. Steel Compos Struct 37:137–150. https://doi.org/10.12989/scs.2020.37.2.137

  6. Rostami R, Mohammadimehr M (2020) Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers. Eng Comput 1:3. https://doi.org/10.1007/s00366-020-01052-5

    Article  Google Scholar 

  7. Sangtarash H, Arab HG, Sohrabi MR, Ghasemi MR (2020) Formulation and evaluation of a new four-node quadrilateral element for analysis of the shell structures. Eng Comput 36:1289–1303. https://doi.org/10.1007/s00366-019-00763-8

    Article  Google Scholar 

  8. Shamloofard M, Hosseinzadeh A, Movahhedy MR (2020) Development of a shell superelement for large deformation and free vibration analysis of composite spherical shells. Eng Comput 1–17. https://doi.org/10.1007/s00366-020-01015-w

  9. Shen HS, Li C, Reddy JN (2020) Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson’s ratio. Comput Methods Appl Mech Eng 360:112727. https://doi.org/10.1016/j.cma.2019.112727

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirwani CK, Mishra PK, Panda SK (2021) Nonlinear steady-state responses of weakly bonded composite shell structure under hygro-thermo-mechanical loading. Compos Struct 265:113768. https://doi.org/10.1016/j.compstruct.2021.113768

    Article  Google Scholar 

  11. Mehar K, Mishra PK, Panda SK (2021) Thermal buckling strength of smart nanotube-reinforced doubly curved hybrid composite panels. Comput Math with Appl 90:13–24. https://doi.org/10.1016/j.camwa.2021.03.010

    Article  MathSciNet  MATH  Google Scholar 

  12. Mehar K, Mishra PK, Panda SK (2021) Thermal post-buckling strength prediction and improvement of shape memory alloy bonded carbon nanotube-reinforced shallow shell panel: a nonlinear finite element micromechanical approach. J Press Vessel Technol 143:. https://doi.org/10.1115/1.4050934

  13. Hirwani CK, Panda SK, Mahapatra TR, Mahapatra SS (2017) Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure. J Aerosp Eng 30:04017045. https://doi.org/10.1061/(asce)as.1943-5525.0000756

    Article  Google Scholar 

  14. Patnaik SS, Roy T (2021) Vibration and damping characteristics of CNTR viscoelastic skewed shell structures under the influence of hygrothermal conditions. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01411-w

    Article  Google Scholar 

  15. Tornabene F, Viscoti M, Dimitri R, Reddy JN (2021) Higher order theories for the vibration study of doubly-curved anisotropic shells with a variable thickness and isogeometric mapped geometry. Compos Struct 267:113829. https://doi.org/10.1016/j.compstruct.2021.113829

    Article  Google Scholar 

  16. Zine A, Tounsi A, Draiche K, et al (2018) A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells. Steel Compos Struct 26:125–137. https://doi.org/10.12989/scs.2018.26.2.125

  17. Barati MR, Zenkour AM (2019) Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mech Adv Mater Struct 26:1580–1588. https://doi.org/10.1080/15376494.2018.1444235

    Article  Google Scholar 

  18. Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35:1375–1389. https://doi.org/10.1007/s00366-018-0669-4

    Article  Google Scholar 

  19. Bisheh H, Wu N, Rabczuk T (2019) Free vibration analysis of smart laminated carbon nanotube-reinforced composite cylindrical shells with various boundary conditions in hygrothermal environments. Thin-Walled Struct 149:106500. https://doi.org/10.1016/j.tws.2019.106500

    Article  Google Scholar 

  20. Katariya PV, Panda SK (2019) Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings. Eng Comput 35:1009–1026. https://doi.org/10.1007/s00366-018-0646-y

    Article  Google Scholar 

  21. Amabili M, Reddy JN (2020) The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells. Compos Struct 244:112265. https://doi.org/10.1016/j.compstruct.2020.112265

    Article  Google Scholar 

  22. Bisheh H, Rabczuk T, Wu N (2020) Effects of nanotube agglomeration on wave dynamics of carbon nanotube-reinforced piezocomposite cylindrical shells. Compos Part B Eng 187:107739. https://doi.org/10.1016/j.compositesb.2019.107739

    Article  Google Scholar 

  23. Rezaiee-Pajand M, Masoodi AR, Arabi E (2018) On the shell thickness-stretching effects using seven-parameter triangular element. Eur J Comput Mech 27:163–185. https://doi.org/10.1080/17797179.2018.1484208

    Article  MathSciNet  MATH  Google Scholar 

  24. Rezaiee-Pajand M, Arabi E, Masoodi AR (2018) A triangular shell element for geometrically nonlinear analysis. Acta Mech 229:323–342. https://doi.org/10.1007/s00707-017-1971-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Masoodi AR, Arabi E (2018) Geometrically nonlinear thermomechanical analysis of shell-like structures. J Therm Stress 41:37–53. https://doi.org/10.1080/01495739.2017.1360166

    Article  Google Scholar 

  26. Żur KK (2018) Quasi-Green’s function approach to free vibration analysis of elastically supported functionally graded circular plates. Compos Struct 183:600–610. https://doi.org/10.1016/j.compstruct.2017.07.012

    Article  Google Scholar 

  27. Żur KK (2019) Free-vibration analysis of discrete-continuous functionally graded circular plate via the Neumann series method. Appl Math Model 73:166–189. https://doi.org/10.1016/j.apm.2019.02.047

    Article  MathSciNet  MATH  Google Scholar 

  28. Sharma N, Lalepalli AK, Hirwani CK et al (2021) Optimal deflection and stacking sequence prediction of curved composite structure using hybrid (FEM and soft computing) technique. Eng Comput 37:477–487. https://doi.org/10.1007/s00366-019-00836-8

    Article  Google Scholar 

  29. Liew KM, Ng TY, Zhao X (2005) Free vibration analysis of conical shells via the element-free kp-Ritz method. J Sound Vib 281:627–645. https://doi.org/10.1016/j.jsv.2004.01.005

    Article  Google Scholar 

  30. Irie T, Yamada G, Kaneko Y (1982) Free vibration of a conical shell with variable thickness. J Sound Vib 82:83–94. https://doi.org/10.1016/0022-460X(82)90544-2

    Article  MATH  Google Scholar 

  31. Civalek Ö (2006) An efficient method for free vibration analysis of rotating truncated conical shells. Int J Press Vessel Pip 83:1–12. https://doi.org/10.1016/j.ijpvp.2005.10.005

    Article  Google Scholar 

  32. Bellman R, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10:40–52. https://doi.org/10.1016/0021-9991(72)90089-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two-dimensional incompressible Navier–Stokes equations. Int J Numer Methods Fluids 15:791–798. https://doi.org/10.1002/fld.1650150704

    Article  MATH  Google Scholar 

  34. Al-Furjan MSH, Safarpour H, Habibi M et al (2020) A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput 1:3. https://doi.org/10.1007/s00366-020-01088-7

    Article  Google Scholar 

  35. Al-Furjan MSH, Habibi M, Rahimi A et al (2020) Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM. Eng Comput 1:3. https://doi.org/10.1007/s00366-020-01144-2

    Article  Google Scholar 

  36. Al-Furjan MSH, Habibi M, Ni J et al (2020) Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems. Eng Comput 1:3. https://doi.org/10.1007/s00366-020-01200-x

    Article  Google Scholar 

  37. Al-Furjan MSH, Hatami A, Habibi M et al (2021) On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method. Compos Struct 257:113150. https://doi.org/10.1016/j.compstruct.2020.113150

    Article  Google Scholar 

  38. Du H, Lim MK, Lin RM (1994) Application of generalized differential quadrature method to structural problems. Int J Numer Methods Eng 37:1881–1896. https://doi.org/10.1002/nme.1620371107

    Article  MathSciNet  MATH  Google Scholar 

  39. Shu C (1996) An efficient approach for free vibration analysis of conical shells. Int J Mech Sci 38:935–949. https://doi.org/10.1016/0020-7403(95)00096-8

    Article  MATH  Google Scholar 

  40. Bagheri H, Kiani Y, Eslami MR (2017) Free vibration of conical shells with intermediate ring support. Aerosp Sci Technol 69:321–332. https://doi.org/10.1016/j.ast.2017.06.037

    Article  Google Scholar 

  41. Penzes LE, Kraus H (1972) Free vibration of prestressed cylindrical shells having arbitrary homogeneous boundary conditions. AIAA J 10:1309–1313. https://doi.org/10.2514/3.6605

    Article  Google Scholar 

  42. Loy CT, Lam KY (1997) Vibration of cylindrical shells with ring support. Int J Mech Sci 39:455–471. https://doi.org/10.1016/s0020-7403(96)00035-5

    Article  MATH  Google Scholar 

  43. Xiang Y, Ma YF, Kitipornchai S et al (2002) Exact solutions for vibration of cylindrical shells with intermediate ring supports. Int J Mech Sci 44:1907–1924. https://doi.org/10.1016/S0020-7403(02)00071-1

    Article  MATH  Google Scholar 

  44. Saunders H, Wisniewski EJ, Paslay PR (1960) Vibrations of Conical Shells. J Acoust Soc Am 32:765–772. https://doi.org/10.1121/1.1908207

    Article  MathSciNet  Google Scholar 

  45. Weingarten VI (1965) Free vibrations of ring-stiffened conical shells. AIAA J 3:1475–1481. https://doi.org/10.2514/3.3171

    Article  Google Scholar 

  46. Srinivasan RS, Krishnan PA (1987) Free vibration of conical shell panels. J Sound Vib 117:153–160. https://doi.org/10.1016/0022-460X(87)90441-X

    Article  Google Scholar 

  47. Ross CTF, Sawkins D, Johns T (1999) Inelastic buckling of thick-walled circular conical shells under external hydrostatic pressure. Ocean Eng 26:1297–1310. https://doi.org/10.1016/S0029-8018(98)00066-3

    Article  Google Scholar 

  48. Ross CTF, Little APF, Adeniyi KA (2005) Plastic buckling of ring-stiffened conical shells under external hydrostatic pressure. Ocean Eng 32:21–36. https://doi.org/10.1016/j.oceaneng.2004.05.007

    Article  Google Scholar 

  49. Chen M, Xie K, Jia W, Xu K (2015) Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions. Ocean Eng 108:241–256. https://doi.org/10.1016/j.oceaneng.2015.07.065

    Article  Google Scholar 

  50. Xie D, Zhang C (2020) Study on transverse vibration characteristics of the coupled system of shaft and submerged conical-cylindrical shell. Ocean Eng 197:. https://doi.org/10.1016/j.oceaneng.2019.106834

  51. Lam KY, Li H, Ng TY, Chua CF (2002) Generalized differential quadrature method for the free vibration of truncated conical panels. J Sound Vib 251:329–348. https://doi.org/10.1006/jsvi.2001.3993

    Article  MATH  Google Scholar 

  52. Lam KY, Hua L (2000) Influence of initial pressure on frequency characteristics of a rotating truncated circular conical shell. Int J Mech Sci 42:213–236. https://doi.org/10.1016/S0020-7403(98)00125-8

    Article  MATH  Google Scholar 

  53. Li H, Lam KY (2000) The generalized differential quadrature method for frequency analysis of a rotating conical shell with initial pressure. Int J Numer Methods Eng 48:1703–1722. https://doi.org/10.1002/1097-0207(20000830)48:12%3c1703::aid-nme961%3e3.0.co;2-x

    Article  MATH  Google Scholar 

  54. Viola E, Artioli E (2004) The G. D. Q. method for the harmonic dynamic analysis of rotational shell structural elements. Struct Eng Mech 17:789–817. https://doi.org/10.12989/sem.2004.17.6.789

  55. Artioli E, Viola E (2005) Static analysis of shear-deformable shells of revolution via G.D.Q. method. Struct Eng Mech 19:459–475. https://doi.org/10.12989/sem.2005.19.4.459

  56. Artioli E, Gould PL, Viola E (2005) A differential quadrature method solution for shear-deformable shells of revolution. Eng Struct 27:1879–1892. https://doi.org/10.1016/j.engstruct.2005.06.005

    Article  Google Scholar 

  57. Irie T, Yamada G, Muramoto Y (1984) Free vibration of joined conical-cylindrical shells. J Sound Vib 95:31–39. https://doi.org/10.1016/0022-460X(84)90256-6

    Article  Google Scholar 

  58. Kamat S, Ganapathi M, Patel BP (2001) Analysis of parametrically excited laminated composite joined conical-cylindrical shells. Comput Struct 79:65–76. https://doi.org/10.1016/S0045-7949(00)00111-5

    Article  Google Scholar 

  59. Lee YS, Yang MS, Kim HS, Kim JH (2002) A study on the free vibration of the joined cylindrical-spherical shell structures. In: Computers and Structures. Pergamon, pp 2405–2414

  60. Wu S, Qu Y, Hua H (2013) Vibration characteristics of a spherical-cylindrical-spherical shell by a domain decomposition method. Mech Res Commun 49:17–26. https://doi.org/10.1016/j.mechrescom.2013.01.002

    Article  Google Scholar 

  61. Bagheri H, Kiani Y, Eslami MR (2017) Free vibration of joined conical-conical shells. Thin-Walled Struct 120:446–457. https://doi.org/10.1016/j.tws.2017.06.032

    Article  MATH  Google Scholar 

  62. Bagheri H, Kiani Y, Eslami MR (2018) Free vibration of joined conical–cylindrical–conical shells. Acta Mech 229:2751–2764. https://doi.org/10.1007/s00707-018-2133-3

    Article  MathSciNet  MATH  Google Scholar 

  63. Li H, Cong G, Li L et al (2019) A semi analytical solution for free vibration analysis of combined spherical and cylindrical shells with non-uniform thickness based on Ritz method. Thin-Walled Struct 145:106443. https://doi.org/10.1016/j.tws.2019.106443

    Article  Google Scholar 

  64. Pang F, Li H, Cui J et al (2019) Application of flügge thin shell theory to the solution of free vibration behaviors for spherical-cylindrical-spherical shell: a unified formulation. Eur J Mech A/Solids 74:381–393. https://doi.org/10.1016/j.euromechsol.2018.12.003

    Article  MathSciNet  MATH  Google Scholar 

  65. Rezaiee-Pajand M, Sobhani E, Masoodi AR (2021) Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells. Thin-Walled Struct 159:107272. https://doi.org/10.1016/j.tws.2020.107272

  66. Qu Y, Wu S, Chen Y, Hua H (2013) Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach. Int J Mech Sci 69:72–84. https://doi.org/10.1016/j.ijmecsci.2013.01.026

    Article  Google Scholar 

  67. Xie K, Chen M, Li Z (2017) Free and Forced Vibration Analysis of Ring-Stiffened Conical-Cylindrical-Spherical Shells Through a Semi-Analytic Method. J Vib Acoust Trans ASME 139:. https://doi.org/10.1115/1.4035482

  68. Zhao Y, Shi D, Meng H (2017) A unified spectro-geometric-Ritz solution for free vibration analysis of conical–cylindrical–spherical shell combination with arbitrary boundary conditions. Arch Appl Mech 87:961–988. https://doi.org/10.1007/s00419-017-1225-1

    Article  Google Scholar 

  69. Bendenia N, Zidour M, Bousahla AA, et al (2020) Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Comput Concr 26:213–226. https://doi.org/10.12989/cac.2020.26.3.213

  70. Bourada F, Bousahla AA, Tounsi A, et al (2020) Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation. Comput Concr 25:485–495. https://doi.org/10.12989/cac.2020.25.6.485

  71. Bousahla AA, Bourada F, Mahmoud SR, et al (2020) Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory. Comput Concr 25:155–166. https://doi.org/10.12989/cac.2020.25.2.155

  72. Heidari FKMMA (2021) On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes. Steel Compos Struct 38:533–545. https://doi.org/10.12989/SCS.2021.38.5.533

  73. Zerrouki R, Karas A, Zidour M, et al (2021) Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Struct Eng Mech 78:117–124. https://doi.org/10.12989/sem.2021.78.2.117

  74. Rafiee M, Liu XF, He XQ, Kitipornchai S (2014) Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. J Sound Vib 333:3236–3251. https://doi.org/10.1016/j.jsv.2014.02.033

    Article  Google Scholar 

  75. Ebrahimi F, Habibi S (2018) Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments. Mech Adv Mater Struct 25:425–438. https://doi.org/10.1080/15376494.2017.1285453

    Article  Google Scholar 

  76. Gholami R, Ansari R (2018) Nonlinear bending of third-order shear deformable carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with different edge supports. Eur Phys J Plus 133:1–14. https://doi.org/10.1140/epjp/i2018-12103-2

    Article  Google Scholar 

  77. Dabbagh A, Rastgoo A, Ebrahimi F (2019) Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory. Thin-Walled Struct 140:304–317. https://doi.org/10.1016/j.tws.2019.03.031

    Article  Google Scholar 

  78. Karimiasl M, Ebrahimi F, Mahesh V (2019) Nonlinear free and forced vibration analysis of multiscale composite doubly curved shell embedded in shape-memory alloy fiber under hygrothermal environment. JVC/Journal Vib Control 25:1945–1957. https://doi.org/10.1177/1077546319842426

    Article  MathSciNet  Google Scholar 

  79. Jalaei MH, Civalek (2019) On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int J Eng Sci 143:14–32. Doi: https://doi.org/10.1016/j.ijengsci.2019.06.013

  80. Arefi M, Kiani M, Civalek O (2020) 3-D magneto-electro-thermal analysis of layered nanoplate including porous core nanoplate and piezomagnetic face-sheets. Appl Phys A Mater Sci Process 126:1–18. https://doi.org/10.1007/s00339-019-3241-1

    Article  Google Scholar 

  81. Arshid E, Khorasani M, Soleimani-Javid Z et al (2021) Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng Comput. https://doi.org/10.1007/s00366-021-01382-y

    Article  Google Scholar 

  82. Hadji L, Avcar M (2021) Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory. Adv Nano Res 10:281–293. https://doi.org/10.12989/anr.2021.10.3.281

  83. Hadji L, Avcar M (2021) Free Vibration Analysis of FG Porous Sandwich Plates under Various Boundary Conditions. J Appl Comput Mech 7:505–519. https://doi.org/10.22055/jacm.2020.35328.2628

  84. Ramteke PM, Panda SK (2021) Free Vibrational Behaviour of Multi-Directional Porous Functionally Graded Structures. Arab J Sci Eng 1–16. https://doi.org/10.1007/s13369-021-05461-6

  85. Ramteke PM, Mehar K, Sharma N, Panda SK (2021) Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (power-law, sigmoid, and exponential) and variable porosity (even/uneven). Sci Iran 28:811–829. https://doi.org/10.24200/SCI.2020.55581.4290

  86. Sancaktar E, Asiri AY, Kumar GS (2004) A novel economical method to improve the toughness of carbon/epoxy long fiber components by the integration of tow loops cores. In: American society of mechanical engineers, design engineering division (Publication) DE. American Society of Mechanical Engineers (ASME), pp 173–188

  87. Magnucki K, Stasiewicz P (2004) Elastic buckling of a porous beam | Magnucki | Journal of Theoretical and Applied Mechanics. J Theor Appl Mech 46:333–337

    MATH  Google Scholar 

  88. Magnucka-Blandzi E (2008) Axi-symmetrical deflection and buckling of circular porous-cellular plate. Thin-Walled Struct 46:333–337. https://doi.org/10.1016/j.tws.2007.06.006

    Article  Google Scholar 

  89. Jabbari M, Mojahedin A, Khorshidvand AR, Eslami MR (2014) Buckling analysis of a functionally graded thin circular plate made of saturated porous materials. J Eng Mech 140:287–295. https://doi.org/10.1061/(asce)em.1943-7889.0000663

    Article  Google Scholar 

  90. Nieto A, Boesl B, Agarwal A (2015) Multi-scale intrinsic deformation mechanisms of 3D graphene foam. Carbon N Y 85:299–308. https://doi.org/10.1016/j.carbon.2015.01.003

    Article  Google Scholar 

  91. Wang C, Zhang C, Chen S (2016) The microscopic deformation mechanism of 3D graphene foam materials under uniaxial compression. Carbon N Y 109:666–672. https://doi.org/10.1016/j.carbon.2016.08.084

    Article  Google Scholar 

  92. Qin Z, Jung GS, Kang MJ, Buehler MJ (2017) The mechanics and design of a lightweight three-dimensional graphene assembly. Sci Adv 3:e1601536. https://doi.org/10.1126/sciadv.1601536

    Article  Google Scholar 

  93. Khan M, Wang C, Wang S, et al The mechanical property and microscopic deformation mechanism of nanoparticle-contained graphene foam materials under uniaxial compression. iopscience.iop.org

  94. Tsai SW (1964) Structural Behavior of Composite Materials. Philco Corp Newport Beach CA

  95. Tsai SW (1965) Strength Characteristics of Composite Materials. Philco Corp Newport Beach CA

  96. Tsai SW, Adams DF, Doner DR (1966) Analyses of Composite Structures. Philco Corp Newport Beach CA

  97. Halpin JC (1969) Effects of environmental factors on composite materials. Air Force Materials Lab Wright-Patterson AFB OH

  98. Affdl JCH, Kardos JL (1976) The Halpin-Tsai equations: A review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  99. Reddy JN (2003) Mechanics of Laminated Composite Plates and Shells Theory and Analysis

  100. Rezaiee-Pajand M, Sobhani E, Masoodi AR (2020) Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method. Aerosp Sci Technol 105:105998. https://doi.org/10.1016/j.ast.2020.105998

    Article  Google Scholar 

Download references

Funding

This study was not funded by any company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Civalek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix I

Appendix I

The governing differential equations of joined hemispherical–cylindrical–conical shells in terms of displacement functions are given by

$$ \begin{gathered} \left( {\frac{1}{{R^{2} }}} \right)\{ A_{{11}} \bar{U}^{{cy}} _{{1,\zeta _{{cy}} \zeta _{{cy}} }} R^{2} + \bar{A}_{{11}} \bar{\Psi }_{{\zeta ,\zeta _{{cy}} \zeta _{{cy}} }}^{{cy}} R^{2} \hfill \\ \quad - nR(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{\Psi }_{{\theta ,\zeta _{{cy}} }}^{{cy}} - nR(A_{{12}} + A_{{66}} )\bar{U}^{{cy}} _{{2,\zeta _{{cy}} }} \hfill \\ \quad + RA_{{12}} \bar{U}^{{cy}} _{{3,\zeta _{{cy}} }} + (\bar{U}^{{cy}} _{1} A_{{22}} + \bar{\Psi }_{\zeta }^{{cy}} \bar{A}_{{22}} ) \hfill \\ \quad - n^{2} A_{{66}} \bar{U}^{{cy}} _{1} - \bar{\Psi }_{\zeta }^{{cy}} n^{2} \bar{A}_{{66}} \} = I_{1} \omega _{n} ^{2} \bar{U}^{{cy}} _{1} + I_{2} \omega _{n} ^{2} \bar{\Psi }_{\zeta }^{{cy}} \hfill \\ \end{gathered} $$
(71)
$$ \begin{gathered} \left( {\frac{1}{{R^{2} }}} \right)\{ \bar{A}_{{66}} \bar{\Psi }_{{\theta ,\zeta _{{cy}} \zeta _{{cy}} }}^{{cy}} R^{2} + A_{{66}} \bar{U}^{{cy}} _{{2,\zeta _{{cy}} \zeta _{{cy}} }} R^{2} \hfill \\ \quad + nR(A_{{12}} + A_{{66}} )\bar{U}^{{cy}} _{{1,\zeta _{{cy}} }} + nR(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{\Psi }_{{\zeta ,\zeta _{{cy}} }}^{{cy}} \hfill \\ \quad - n\bar{U}^{{cy}} _{2} (\kappa A_{{44}} + A_{{22}} ) + n\bar{U}^{{cy}} _{3} (\kappa A_{{44}} + A_{{22}} )\} \hfill \\ \quad + ( - n^{2} \bar{A}_{{22}} + R\kappa A_{{44}} )\bar{\Psi }_{\theta }^{{cy}} \hfill \\ \;\;\;= I_{1} \omega _{n} ^{2} \bar{U}^{{cy}} _{2} + I_{2} \omega _{n} ^{2} \bar{\Psi }_{\theta }^{{cy}} \hfill \\ \end{gathered} $$
(72)
$$ \begin{gathered} \left( {\frac{1}{{R^{2} }}} \right)\{ \kappa A_{{55}} R^{2} \bar{U}^{{cy}} _{{3,\zeta _{{cy}} \zeta _{{cy}} }} + (R[R\kappa A_{{55}} - \bar{A}_{{12}} )\bar{\Psi }_{{\zeta ,\zeta _{{cy}} }}^{{cy}} \hfill \\ \quad - RA_{{12}} \bar{U}^{{cy}} _{{1,\zeta _{{co}} }} - \bar{U}^{{cy}} _{3} A_{{22}} - \bar{A}_{{22}} n\bar{\Psi }_{\theta }^{{cy}} \hfill \\ \quad + \bar{U}^{{cy}} _{2} (\kappa A_{{44}} + A_{{22}} )n \hfill \\ \quad - ((nA_{{44}} \bar{\Psi }_{\theta }^{{cy}} )R + A_{{44}} n^{2} \bar{U}^{{cy}} _{3} )\kappa \} \hfill \\ \;\;\;= I_{1} \omega _{n} ^{2} \bar{U}^{{cy}} _{3} \hfill \\ \end{gathered} $$
(73)
$$ \begin{gathered} \left( {\frac{1}{{R^{2} }}} \right)\{ \bar{A}_{{11}} \bar{U}^{{cy}} _{{1,\zeta _{{cy}} \zeta _{{cy}} }} R^{2} + \bar{\bar{A}}_{{11}} \bar{\Psi }_{{\zeta ,\zeta _{{cy}} \zeta _{{cy}} }}^{{cy}} R^{2} \hfill \\ \quad - nR(\bar{\bar{A}}_{{12}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{{\theta ,\zeta _{{cy}} }}^{{cy}} - nR(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{U}^{{cy}} _{{2,\zeta _{{cy}} }} \hfill \\ \quad + ( - R^{2} A_{{55}} \kappa + \bar{A}_{{12}} R)\bar{U}^{{cy}} _{3} - n^{2} \bar{A}_{{66}} \bar{U}^{{cy}} _{1} \hfill \\ \quad - R^{2} A_{{55}} \kappa \bar{\Psi }_{\zeta }^{{cy}} - \bar{\Psi }_{\zeta }^{{cy}} n^{2} \bar{\bar{A}}_{{66}} \} \hfill \\ \;\;\;= I_{2} \omega _{n} ^{2} \bar{U}^{{cy}} _{1} + I_{3} \omega _{n} ^{2} \bar{\Psi }_{\zeta }^{{cy}} \hfill \\ \end{gathered} $$
(74)
$$ \begin{gathered} \left( {\frac{1}{{R^{2} }}} \right)\{ \bar{\bar{A}}_{{66}} \bar{\Psi }_{{\theta ,\zeta _{{cy}} \zeta _{{cy}} }}^{{cy}} R^{2} + \bar{A}_{{66}} \bar{U}^{{cy}} _{{2,\zeta _{{cy}} \zeta _{{cy}} }} R^{2} \hfill \\ \quad + nR(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{U}^{{cy}} _{{1,\zeta _{{cy}} }} + nR(\bar{\bar{A}}_{{12}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{{\zeta ,\zeta _{{cy}} }}^{{cy}} \hfill \\ \quad - R^{2} \bar{\Psi }_{\theta }^{{cy}} \kappa A_{{44}} - n^{2} \bar{\bar{A}}_{{22}} \bar{\Psi }_{\theta }^{{cy}} \hfill \\ \quad - \kappa A_{{44}} (n\bar{U}^{{cy}} _{3} - \bar{U}^{{cy}} _{2} )R - \bar{U}^{{cy}} _{2} n^{2} \bar{A}_{{22}} \hfill \\ \quad + \bar{U}^{{cy}} _{3} n\bar{A}_{{22}} \} = I_{2} \omega _{n} ^{2} \bar{U}^{{cy}} _{2} + I_{3} \omega _{n} ^{2} \bar{\Psi }_{\theta }^{{cy}} \hfill \\ \end{gathered} $$
(75)
$$ \begin{gathered} \left( {\frac{1}{{R(\zeta _{{co}} )^{2} }}} \right)\{ A_{{11}} \bar{U}^{{co}} _{{1,\zeta _{{co}} \zeta _{{co}} }} R(\zeta _{{co}} )^{2} + \bar{A}_{{11}} \bar{\Psi }_{{\zeta ,\zeta _{{co}} \zeta _{{co}} }}^{{co}} R(\zeta _{{co}} )^{2} \hfill \\ - nR(\zeta _{{co}} )(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{\Psi }_{{\theta ,\zeta _{{co}} }}^{{co}} - nR(\zeta _{{co}} )(A_{{12}} + A_{{66}} )\bar{U}^{{co}} _{{2,\zeta _{{co}} }} \hfill \\ \quad + \sin (\Theta )R(\zeta _{{co}} )A_{{11}} \bar{U}^{{co}} _{{1,\zeta _{{co}} }} + \cos (\Theta )R(\zeta _{{co}} )A_{{12}} \bar{U}^{{co}} _{{3,\zeta _{{co}} }} \hfill \\ \quad + \sin (\Theta )R(\zeta _{{co}} )\bar{A}_{{11}} \bar{\Psi }_{{\zeta ,\zeta _{{co}} }}^{{co}} + ( - A_{{22}} \bar{U}^{{co}} _{3} \cos (\Theta ) + ((\bar{A}_{{22}} + \bar{A}_{{66}} )\bar{\Psi }_{\theta }^{{co}} \hfill \\ \quad + \bar{U}^{{co}} _{2} (A_{{22}} + A_{{66}} ))n)\sin (\Theta ) + (\bar{U}^{{co}} _{1} A_{{22}} + \bar{\Psi }_{\zeta }^{{co}} \bar{A}_{{22}} )\cos (\Theta )^{2} \hfill \\ \quad + ( - n^{2} A_{{66}} - A_{{22}} )\bar{U}^{{co}} _{1} - \bar{\Psi }_{\zeta }^{{co}} (n^{2} \bar{A}_{{66}} + \bar{A}_{{22}} )\} = I_{1} \omega _{n} ^{2} \bar{U}^{{co}} _{1} + I_{2} \omega _{n} ^{2} \bar{\Psi }_{\zeta }^{{co}} \hfill \\ \end{gathered} $$
(76)
$$ \begin{gathered} \left( {\frac{1}{{R(\zeta _{{co}} )^{2} }}} \right)\{ \bar{A}_{{66}} \bar{\Psi }_{{\theta ,\zeta _{{co}} \zeta _{{co}} }}^{{co}} R(\zeta _{{co}} )^{2} + A_{{66}} \bar{U}^{{co}} _{{2,\zeta _{{co}} \zeta _{{co}} }} R(\zeta _{{co}} )^{2} \hfill \\ \quad + nR(\zeta _{{co}} )(A_{{12}} + A_{{66}} )\bar{U}^{{co}} _{{1,\zeta _{{co}} }} + nR(\zeta _{{co}} )(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{\Psi }_{{\zeta ,\zeta _{{co}} }}^{{co}} \hfill \\ \quad + \sin (\Theta )R(\zeta _{{co}} )\bar{A}_{{66}} \bar{\Psi }_{{\theta ,\zeta _{{co}} }}^{{co}} + \sin (\Theta )R(\zeta _{{co}} )A_{{66}} \bar{U}^{{co}} _{{2,\zeta _{{co}} }} \hfill \\ \quad + \cos (\Theta )R(\zeta _{{co}} )\kappa A_{{44}} \bar{\Psi }_{\theta }^{{co}} + (\bar{\Psi }_{\theta }^{{co}} \bar{A}_{{66}} - \bar{U}^{{co}} _{2} (\kappa A_{{44}} - A_{{66}} ))\cos (\Theta )^{2} \hfill \\ \quad + n\bar{U}^{{co}} _{2} (\kappa A_{{44}} + A_{{22}} )\cos (\Theta ) + n((A_{{22}} + A_{{66}} )\bar{U}^{{co}} _{1} \hfill \\ \quad + \bar{\Psi }_{\zeta }^{{co}} (\bar{A}_{{22}} + \bar{A}_{{66}} )\sin (\Theta ) + ( - n^{2} \bar{A}_{{22}} - \bar{A}_{{66}} )\bar{\Psi }_{\theta }^{{co}} - \bar{U}^{{co}} _{2} (n^{2} A_{{22}} + A_{{66}} )\} \hfill \\ \;\;\;= I_{1} \omega _{n} ^{2} \bar{U}^{{co}} _{2} + I_{2} \omega _{n} ^{2} \bar{\Psi }_{\theta }^{{co}} \hfill \\ \end{gathered} $$
(77)
$$ \begin{gathered} \left( {\frac{1}{{R(\zeta _{{co}} )^{2} }}} \right)\{ \kappa A_{{55}} R(\zeta _{{co}} )^{2} \bar{U}^{{co}} _{{3,\zeta _{{co}} \zeta _{{co}} }} + (R(\zeta _{{co}} )[R(\zeta _{{co}} )\kappa A_{{55}} - \bar{A}_{{12}} \cos (\Theta ))\bar{\Psi }_{{\zeta ,\zeta _{{co}} }}^{{co}} \hfill \\ \quad - R(\zeta _{{co}} )\cos (\Theta )A_{{12}} \bar{U}^{{co}} _{{1,\zeta _{{co}} }} + \sin (\Theta )R(\zeta _{{co}} )\kappa A_{{55}} \bar{U}^{{co}} _{{3,\zeta _{{co}} }} \hfill \\ \quad - \bar{U}^{{co}} _{3} \cos (\Theta )^{2} A_{{22}} + (( - A_{{22}} \bar{U}^{{co}} _{1} - \bar{A}_{{22}} \bar{\Psi }_{\zeta }^{{co}} )\sin (\Theta ) \hfill \\ \quad + (\bar{A}_{{22}} \bar{\Psi }_{\theta }^{{co}} + \bar{U}^{{co}} _{2} (\kappa A_{{44}} + A_{{22}} ))n)\cos (\Theta ) \hfill \\ \quad - ((nA_{{44}} \bar{\Psi }_{\theta }^{{co}} - A_{{44}} \bar{\Psi }_{\zeta }^{{co}} \sin (\Theta ))R(\zeta _{{co}} ) + n^{2} \bar{U}^{{co}} _{3} )\kappa \} \hfill \\ \;\;\;= I_{1} \omega _{n} ^{2} \bar{U}^{{co}} _{3} \hfill \\ \end{gathered} $$
(78)
$$ \begin{gathered} \left( {\frac{1}{{R(\zeta _{{co}} )^{2} }}} \right)\{ \bar{A}_{{11}} \bar{U}^{{co}} _{{1,\zeta _{{co}} \zeta _{{co}} }} R(\zeta _{{co}} )^{2} + \bar{\bar{A}}_{{11}} \bar{\Psi }_{{\zeta ,\zeta _{{co}} \zeta _{{co}} }}^{{co}} R(\zeta _{{co}} )^{2} \hfill \\ \quad - nR(\zeta _{{co}} )(\bar{\bar{A}}_{{12}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{{\theta ,\zeta _{{co}} }}^{{co}} - nR(\zeta _{{co}} )(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{U}^{{co}} _{{2,\zeta _{{co}} }} \hfill \\ \quad + ( - R(\zeta _{{co}} )^{2} A_{{55}} \kappa + \bar{A}_{{12}} \cos (\Theta )R(\zeta _{{co}} ))\bar{U}^{{co}} _{3} \hfill \\ \quad + \sin (\Theta )R(\zeta _{{co}} )\bar{A}_{{11}} \bar{U}^{{co}} _{{1,\zeta _{{co}} }} + \sin (\Theta )R(\zeta _{{co}} )\bar{\bar{A}}_{{11}} \bar{\Psi }_{{\zeta ,\zeta _{{co}} }}^{{co}} \hfill \\ \quad - R(\zeta _{{co}} )^{2} A_{{55}} \kappa \bar{\Psi }_{\zeta }^{{co}} + ( - \bar{A}_{{22}} \bar{U}^{{co}} _{3} \cos (\Theta ) \hfill \\ \quad + ((\bar{\bar{A}}_{{22}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{\theta }^{{co}} + \bar{U}^{{co}} _{2} (\bar{A}_{{22}} + \bar{A}_{{66}} ))n)\sin (\Theta ) \hfill \\ \quad + (\bar{U}^{{co}} _{1} \bar{A}_{{22}} + \bar{\Psi }_{\zeta }^{{co}} \bar{\bar{A}}_{{22}} )\cos (\Theta )^{2} - (n^{2} A_{{66}} + A_{{22}} )\bar{U}^{{co}} _{1} + \bar{\Psi }_{\zeta }^{{co}} ( - n^{2} \bar{\bar{A}}_{{66}} - \bar{\bar{A}}_{{22}} )\} \hfill \\ \;\;\;= I_{2} \omega _{n} ^{2} \bar{U}^{{co}} _{1} + I_{3} \omega _{n} ^{2} \bar{\Psi }_{\zeta }^{{co}} \hfill \\ \end{gathered} $$
(79)
$$ \begin{gathered} \left( {\frac{1}{{R(\zeta _{{co}} )^{2} }}} \right)\{ \bar{\bar{A}}_{{66}} \bar{\Psi }_{{\theta ,\zeta _{{co}} \zeta _{{co}} }}^{{co}} R(\zeta _{{co}} )^{2} + \bar{A}_{{66}} \bar{U}^{{co}} _{{2,\zeta _{{co}} \zeta _{{co}} }} R(\zeta _{{co}} )^{2} \hfill \\ \quad + nR(\zeta _{{co}} )(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{U}^{{co}} _{{1,\zeta _{{co}} }} + nR(\zeta _{{co}} )(\bar{\bar{A}}_{{12}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{{\zeta ,\zeta _{{co}} }}^{{co}} \hfill \\ \quad + \sin (\Theta )R(\zeta _{{co}} )\bar{\bar{A}}_{{66}} \bar{\Psi }_{{\theta ,\zeta _{{co}} }}^{{co}} + \sin (\Theta )R(\zeta _{{co}} )\bar{A}_{{66}} \bar{U}^{{co}} _{{2,\zeta _{{co}} }} \hfill \\ \quad - R(\zeta _{{co}} )^{2} \bar{\Psi }_{\theta }^{{co}} \kappa A_{{44}} - \kappa A_{{44}} (n\bar{U}^{{co}} _{3} - \cos (\Theta )\bar{U}^{{co}} _{2} )R(\zeta _{{co}} ) \hfill \\ \quad + n((\bar{A}_{{22}} + \bar{A}_{{66}} )\bar{U}^{{co}} _{1} + \bar{\Psi }_{\zeta }^{{co}} (\bar{\bar{A}}_{{22}} + \bar{\bar{A}}_{{66}} )\sin (\Theta ) \hfill \\ \quad + (\bar{\Psi }_{\theta }^{{co}} \bar{\bar{A}}_{{66}} + \bar{U}^{{co}} _{2} (\bar{A}_{{66}} )\cos (\Theta )^{2} + \cos (\Theta )\bar{U}^{{co}} _{3} n\bar{A}_{{22}} \hfill \\ \quad + ( - n^{2} \bar{\bar{A}}_{{22}} - \bar{\bar{A}}_{{66}} )\bar{\Psi }_{\theta }^{{co}} - \bar{U}^{{co}} _{2} (n^{2} \bar{A}_{{22}} + \bar{A}_{{66}} )\} \hfill \\ \;\;\; = I_{2} \omega _{n} ^{2} \bar{U}^{{co}} _{2} + I_{3} \omega _{n} ^{2} \bar{\Psi }_{\theta }^{{co}} \hfill \\ \end{gathered} $$
(80)
$$ \begin{gathered} \left( {\frac{1}{{R^{2} \sin (\zeta _{{hs}} )^{2} }}} \right)\{ ( - \cos (\zeta _{{hs}} )^{2} A_{{11}} + A_{{11}} )\bar{U}^{{hs}} _{{1,\zeta _{{hs}} \zeta _{{hs}} }} + ( - \cos (\zeta _{{hs}} )^{2} \bar{A}_{{11}} + \bar{A}_{{11}} )\bar{\Psi }_{{\zeta ,\zeta _{{hs}} \zeta _{{hs}} }}^{{hs}} \hfill \\ \quad - (\cos (\zeta _{{hs}} )^{2} - 1)(\kappa A_{{55}} + A_{{11}} + A_{{12}} )\bar{U}^{{hs}} _{{3,\zeta _{{hs}} }} - n\sin (\zeta _{{hs}} )(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{\Psi }_{{\theta ,\zeta _{{hs}} }}^{{hs}} \hfill \\ \quad - n\sin (\zeta _{{hs}} )(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{U}^{{hs}} _{{2,\zeta _{{hs}} }} + \sin (\zeta _{{hs}} )\cos (\zeta _{{hs}} )A_{{11}} \bar{U}^{{hs}} _{{1,\zeta _{{hs}} }} \hfill \\ \quad + \sin (\zeta _{{hs}} )\cos (\zeta _{{hs}} )\bar{A}_{{11}} \bar{\Psi }_{{\zeta ,\zeta _{{hs}} }}^{{hs}} + ((\kappa A_{{55}} + A_{{12}} - A_{{22}} )\bar{U}^{{hs}} _{1} \hfill \\ \quad + \bar{\Psi }_{\zeta }^{{hs}} ( - \kappa A_{{55}} R + \bar{A}_{{12}} - \bar{A}_{{22}} ))\cos (\zeta _{{hs}} )^{2} + (\bar{U}^{{hs}} _{3} (A_{{11}} + A_{{22}} )\sin (\zeta _{{hs}} ) \hfill \\ \quad + ((\bar{A}_{{22}} + \bar{A}_{{66}} )\bar{\Psi }_{\theta }^{{hs}} + \bar{U}^{{hs}} _{2} (A_{{22}} + A_{{66}} )n)\cos (\zeta _{{hs}} ) + \hfill \\ \quad ( - n^{2} A_{{66}} - \kappa A_{{55}} - A_{{12}} )\bar{U}^{{hs}} _{1} - \bar{\Psi }_{\zeta }^{{hs}} ( - \kappa A_{{55}} R + n^{2} \bar{A}_{{66}} + \bar{A}_{{12}} )\} \hfill \\ \;\;\;= I_{1} \omega _{n} ^{2} \bar{U}^{{hs}} _{1} + I_{2} \omega _{n} ^{2} \bar{\Psi }_{\zeta }^{{hs}} \hfill \\ \end{gathered} $$
(81)
$$ \begin{gathered} \left( {\frac{1}{{R^{2} \sin (\zeta _{{hs}} )^{2} }}} \right)\{ ( - \cos (\zeta _{{hs}} )^{2} \bar{A}_{{66}} + \bar{A}_{{66}} )\bar{\Psi }_{{\theta ,\zeta _{{hs}} \zeta _{{hs}} }}^{{hs}} + ( - \cos (\zeta _{{hs}} )^{2} A_{{66}} + A_{{66}} )\bar{U}^{{hs}} _{{2,\zeta _{{hs}} \zeta _{{hs}} }} \hfill \\ \quad + n\sin (\zeta _{{hs}} )(A_{{12}} + A_{{66}} )\bar{U}^{{hs}} _{{1,\zeta _{{hs}} }} + n\sin (\zeta _{{hs}} )(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{\Psi }_{{\zeta ,\zeta _{{hs}} }}^{{hs}} \hfill \\ \quad + \sin (\zeta _{{hs}} )\cos (\zeta _{{hs}} )\bar{A}_{{66}} \bar{\Psi }_{{\theta ,\zeta _{{hs}} }}^{{hs}} + \sin (\zeta _{{hs}} )\cos (\zeta _{{hs}} )A_{{66}} \bar{U}^{{hs}} _{{2,\zeta _{{hs}} }} \hfill \\ \quad + (( - \kappa A_{{44}} R - 2\bar{A}_{{66}} )\bar{\Psi }_{\theta }^{{hs}} + \bar{U}^{{hs}} _{2} (\kappa A_{{44}} - 2A_{{66}} ))\cos (\zeta _{{hs}} )^{2} \hfill \\ \quad + ((A_{{22}} + A_{{66}} )\bar{U}^{{hs}} _{1} + \bar{\Psi }_{\zeta }^{{hs}} (\bar{A}_{{22}} + \bar{A}_{{66}} ))n\cos (\zeta _{{hs}} ) + \hfill \\ \quad n\bar{U}^{{hs}} _{3} (\kappa A_{{44}} + A_{{12}} + A_{{22}} )\sin (\zeta _{{hs}} ) + (\kappa A_{{44}} R - n^{2} \bar{A}_{{22}} + \bar{A}_{{66}} )\bar{\Psi }_{\theta }^{{hs}} \hfill \\ \quad - \bar{U}^{{hs}} _{2} (n^{2} A_{{22}} + \kappa A_{{44}} - A_{{66}} )\} = I_{1} \omega _{n} ^{2} \bar{U}^{{hs}} _{2} + I_{2} \omega _{n} ^{2} \bar{\Psi }_{\theta }^{{hs}} \hfill \\ \end{gathered} $$
(82)
$$ \begin{gathered} \left( {\frac{1}{{R^{2} \sin (\zeta _{{hs}} )^{2} }}} \right)\{ ( - \cos (\zeta _{{hs}} )^{2} \kappa A_{{55}} + \kappa A_{{55}} )\bar{U}^{{hs}} _{{3,\zeta _{{hs}} \zeta _{{hs}} }} \hfill \\ \quad + (\cos (\zeta _{{hs}} )^{2} - 1)(\kappa A_{{55}} + A_{{11}} + A_{{12}} )\bar{U}^{{hs}} _{{1,\zeta _{{hs}} }} \hfill \\ \quad + (\cos (\zeta _{{hs}} )^{2} - 1)( - \kappa A_{{55}} R + \bar{A}_{{11}} + \bar{A}_{{12}} )\bar{\Psi }_{{\zeta ,\zeta _{{hs}} }}^{{hs}} \hfill \\ \quad + \sin (\zeta _{{hs}} )\cos (\zeta _{{hs}} )\kappa A_{{55}} \bar{U}^{{hs}} _{{3,\zeta _{{hs}} }} + \bar{U}^{{hs}} _{3} (A_{{11}} + 2A_{{12}} + A_{{22}} )\cos (\zeta _{{hs}} )^{2} \hfill \\ \quad - ((\kappa A_{{55}} + A_{{22}} + A_{{12}} )\bar{U}^{{hs}} _{1} + \bar{\Psi }_{\zeta }^{{hs}} ( - \kappa A_{{55}} R + \bar{A}_{{22}} + \bar{A}_{{12}} ))\sin (\zeta _{{hs}} )\cos (\zeta _{{hs}} ) \hfill \\ \quad + n(( - \kappa A_{{44}} R + \bar{A}_{{22}} + \bar{A}_{{12}} )\bar{\Psi }_{\theta }^{{hs}} + \bar{U}^{{hs}} _{2} (\kappa A_{{44}} + A_{{12}} + A_{{22}} ))\sin (\zeta _{{hs}} ) \hfill \\ \quad - \bar{U}^{{hs}} _{3} (\kappa n^{2} A_{{44}} + A_{{11}} + 2A_{{12}} + A_{{22}} )\} = I_{1} \omega _{n} ^{2} \bar{U}^{{hs}} _{3} \hfill \\ \end{gathered} $$
(83)
$$ \begin{gathered} \left( {\frac{1}{{R^{2} \sin (\zeta _{{hs}} )^{2} }}} \right)\{ ( - \cos (\zeta _{{hs}} )^{2} \bar{A}_{{11}} + \bar{A}_{{11}} )\bar{U}^{{hs}} _{{1,\zeta _{{hs}} \zeta _{{hs}} }} + ( - \cos (\zeta _{{hs}} )^{2} \bar{\bar{A}}_{{11}} + \bar{\bar{A}}_{{11}} )\bar{\Psi }_{{\zeta ,\zeta _{{hs}} \zeta _{{hs}} }}^{{hs}} \hfill \\ \quad + (\cos (\zeta _{{hs}} )^{2} - 1)(\kappa A_{{55}} R + \bar{\bar{A}}_{{11}} + \bar{\bar{A}}_{{12}} )\bar{U}^{{hs}} _{{3,\zeta _{{hs}} }} - n\sin (\zeta _{{hs}} )(\bar{\bar{A}}_{{12}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{{\theta ,\zeta _{{hs}} }}^{{hs}} \hfill \\ \quad - n\sin (\zeta _{{hs}} )(\bar{\bar{A}}_{{12}} + \bar{\bar{A}}_{{66}} )\bar{U}^{{hs}} _{{2,\zeta _{{hs}} }} + \sin (\zeta _{{hs}} )\cos (\zeta _{{hs}} )\bar{A}_{{11}} \bar{U}^{{hs}} _{{1,\zeta _{{hs}} }} \hfill \\ \quad + \sin (\zeta _{{hs}} )\cos (\zeta _{{hs}} )\bar{\bar{A}}_{{11}} \bar{\Psi }_{{\zeta ,\zeta _{{hs}} }}^{{hs}} + ((\kappa A_{{55}} R + \bar{A}_{{12}} - \bar{A}_{{22}} )\bar{U}^{{hs}} _{1} \hfill \\ \quad + \bar{\Psi }_{\zeta }^{{hs}} ( - \kappa A_{{55}} R^{2} + \bar{\bar{A}}_{{12}} - \bar{\bar{A}}_{{22}} ))\cos (\zeta _{{hs}} )^{2} + (\bar{U}^{{hs}} _{3} (\bar{A}_{{11}} + \bar{A}_{{22}} )\sin (\zeta _{{hs}} ) \hfill \\ \quad + n((\bar{\bar{A}}_{{22}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{\theta }^{{hs}} + \bar{U}^{{hs}} _{2} (\bar{A}_{{22}} + \bar{A}_{{66}} )))\cos (\zeta _{{hs}} ) + \hfill \\ \quad ( - n^{2} \bar{A}_{{66}} - \kappa A_{{55}} R - \bar{A}_{{12}} )\bar{U}^{{hs}} _{1} - \bar{\Psi }_{\zeta }^{{hs}} ( - \kappa A_{{55}} R^{2} + n^{2} \bar{\bar{A}}_{{66}} + \bar{\bar{A}}_{{12}} )\} \hfill \\ \;\;\; = I_{2} \omega _{n} ^{2} \bar{U}^{{hs}} _{1} + I_{3} \omega _{n} ^{2} \bar{\Psi }_{\zeta }^{{hs}} \hfill \\ \end{gathered} $$
(84)
$$ \begin{gathered} \left( {\frac{1}{{R^{2} \sin (\zeta _{{hs}} )^{2} }}} \right)\{ ( - \cos (\zeta _{{hs}} )^{2} \bar{\bar{A}}_{{66}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{{\theta ,\zeta _{{hs}} \zeta _{{hs}} }}^{{hs}} + ( - \cos (\zeta _{{hs}} )^{2} \bar{A}_{{66}} + A_{{66}} )\bar{U}^{{hs}} _{{2,\zeta _{{hs}} \zeta _{{hs}} }} \hfill \\ \quad + n\sin (\zeta _{{hs}} )(\bar{A}_{{12}} + \bar{A}_{{66}} )\bar{U}^{{hs}} _{{1,\zeta _{{hs}} }} + n\sin (\zeta _{{hs}} )(\bar{\bar{A}}_{{12}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{{\zeta ,\zeta _{{hs}} }}^{{hs}} \hfill \\ \quad + \sin (\zeta _{{hs}} )\cos (\vartheta )\bar{\bar{A}}_{{66}} \bar{\Psi }_{{\theta ,\zeta _{{hs}} }}^{{hs}} + \sin (\zeta _{{hs}} )\cos (\vartheta \zeta _{{hs}} )\bar{A}_{{66}} \bar{U}^{{hs}} _{{2,\zeta _{{hs}} }} \hfill \\ \quad + (( - \kappa A_{{44}} R^{2} - 2\bar{\bar{A}}_{{66}} )\bar{\Psi }_{\theta }^{{hs}} - \bar{U}^{{hs}} _{2} (\kappa A_{{44}} R + 2A_{{66}} ))\cos (\zeta _{{hs}} )^{2} \hfill \\ \quad + ((\bar{A}_{{22}} + \bar{A}_{{66}} )\bar{U}^{{hs}} _{1} + \bar{\Psi }_{\zeta }^{{hs}} (\bar{\bar{A}}_{{22}} + \bar{\bar{A}}_{{66}} ))n\cos (\zeta _{{hs}} ) - \hfill \\ \quad n\bar{U}^{{hs}} _{3} (\kappa A_{{44}} R - \bar{A}_{{12}} - \bar{A}_{{22}} )\sin (\zeta _{{hs}} ) + ( - \kappa A_{{44}} R^{2} - n^{2} \bar{\bar{A}}_{{22}} + \bar{\bar{A}}_{{66}} )\bar{\Psi }_{\theta }^{{hs}} \hfill \\ \quad - \bar{U}^{{hs}} _{2} (n^{2} A_{{22}} - \kappa A_{{44}} R - A_{{66}} )\} = I_{2} \omega _{n} ^{2} \bar{U}^{{hs}} _{2} + I_{3} \omega _{n} ^{2} \bar{\Psi }_{\theta }^{{hs}} \hfill \\ \end{gathered} $$
(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, E., Arbabian, A., Civalek, Ö. et al. The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Engineering with Computers 38 (Suppl 4), 3125–3152 (2022). https://doi.org/10.1007/s00366-021-01453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01453-0

Keywords

Navigation