An efficient approach for free vibration analysis of conical shells

https://doi.org/10.1016/0020-7403(95)00096-8Get rights and content

Abstract

In this paper, the global method of generalized differential quadrature (GDQ) is applied for the first time to study the free vibration of isotropic conical shells. The shell equations used are Love-type. The displacement fields are expressed as product of unknown functions along the axial direction and Fourier functions along the circumferential direction. The derivatives in both the governing equations and the boundary conditions are discretized by the GDQ method. Using the GDQ method, the natural frequencies can be easily and accurately obtained by using a considerably small number of grid points. The accuracy and efficiency of the GDQ method is examined by comparing the results with those in the literature and very good agreement is observed. The fundamental frequency parameters for four sets of boundary conditions and various semivertex angles are also shown in the paper.

Cited by (99)

View all citing articles on Scopus
View full text