Skip to main content
Log in

Optogenetik und Zellersatz in der Retinologie

Regenerative Augenheilkunde – Was wir können!

Optogenetics and cell replacement in retinology

Regenerative ophthalmology—What we can do!

  • Leitthema
  • Published:
Die Ophthalmologie Aims and scope Submit manuscript

Zusammenfassung

Für viele degenerative Netzhauterkrankungen, die progressiv zur Erblindung führen, gibt es bisher keine Therapie. In den letzten Jahren wurden einige innovative Therapien experimentell erforscht, die vielversprechend sind, da diese unabhängig von der genetischen Ursache der degenerativen Erkrankung sind. Hierzu zählt zum einen die Optogenetik, die lichtsensitive Proteine umfasst, die selektiv als Ionenkanal oder Ionenpumpe das Potenzial der behandelten Zelle steuern. Somit können diese Zellen per Licht angeregt oder inhibiert werden, quasi funktional ferngesteuert. Somit werden aus noch vorhandenen Netzhautzellen künstliche Photorezeptoren induziert, was bereits im Tierversuch erfolgreich angewandt wurde. Diese Therapie wird bereits am Patienten erprobt und führt zu einer Sehverbesserung, jedoch liegen bisher nur Daten eines Patienten vor. Optogenetische Therapien benötigen zusätzlich eine spezielle Brille, um die Lichtimpulse in adäquater Stärke und Wellenlänge für die jeweiligen Optogene anzupassen. Ein anderer spannender Ansatz ist die Zellersatztherapie von RPE(retinales Pigmentepithel)- und Photorezeptorzellen, um degeneriertes Zellmaterial auszutauschen. Dieses sieht bei RPE-Zellen in klinischen Studien sehr erfolgreich aus. Die Gewinnung von menschlichen Photorezeptorzellen aus Stammzellen ist technisch möglich, allerdings sehr aufwendig. Die Integration der transplantierten Photorezeptoren in das vorhandene Netzhautgewebe bedarf einer weiteren Optimierung zwecks breiter klinischer Anwendung. Aber beide Ansätze, Zellersatz und Optogenetik, sind vielversprechend, sodass die Translation von der Grundlagenforschung in die klinische Anwendung gelingen wird.

Abstract

For many degenerative retinal diseases that progressively lead to blindness, no treatment options are available so far. In recent years, several innovative therapies have been experimentally explored, which are promising because they are independent of the genetic cause of the degenerative disease. One of these is optogenetics, which involves light-sensitive proteins that selectively act as ion channels or ion pumps to control the potential of the treated cell. Thus, these cells can be stimulated or inhibited by light, quasi functionally remote controlled. In this way artificial photoreceptors are induced from the remaining cells, which has already been successfully employed in animal experiments. This type of treatment is already being tested on patients and leads to an improvement in vision, but so far only data from one patient are available. The use of optogenetics additionally requires special eyeglasses to adapt the light impulses in adequate strength and wavelength for the respective optogenes. Another exciting approach is cell replacement therapy of retinal pigment epithelium (RPE) and photoreceptor cells to exchange degenerated cell material. This appears to be very successful for RPE cells in clinical trials. Obtaining human photoreceptors from stem cells is technically possible, but very laborious. The integration of the transplanted photoreceptors into the host retinal tissue also needs further optimization for broader clinical applications; however, both cell replacement and optogenetics approaches are promising, so that the translation from basic research into clinical application will be successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Algvere PV, Berglin L, Gouras P, Sheng Y (1994) Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch Clin Exp Ophthalmol 232(12):707–716. https://doi.org/10.1007/BF00184273

    Article  CAS  PubMed  Google Scholar 

  2. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529(7586):345–350. https://doi.org/10.1038/nature16468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bartsch U, Oriyakhel W, Kenna PF et al (2008) Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp Eye Res 86(4):691–700. https://doi.org/10.1016/j.exer.2008.01.018

    Article  CAS  PubMed  Google Scholar 

  4. Bi A, Cui J, Ma Y‑P et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1):23–33. https://doi.org/10.1016/j.neuron.2006.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268. https://doi.org/10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  6. Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329(5990):413–417. https://doi.org/10.1126/science.1190897

    Article  CAS  PubMed  Google Scholar 

  7. Chacko DM, Rogers JA, Turner JE, Ahmad I (2000) Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat. Biochem Biophys Res Commun 268(3):842–846. https://doi.org/10.1006/bbrc.2000.2153

    Article  CAS  PubMed  Google Scholar 

  8. Cowan CS, Renner M, De Gennaro M et al (2020) Cell types of the human retina and its organoids at single-cell resolution. Cell 182(6):1623–1640.e34. https://doi.org/10.1016/j.cell.2020.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. da Cruz L, Fynes K, Georgiadis O et al (2018) Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 36(4):328–337. https://doi.org/10.1038/nbt.4114

    Article  CAS  PubMed  Google Scholar 

  10. Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56. https://doi.org/10.1038/nature09941

    Article  CAS  PubMed  Google Scholar 

  11. Falkner-Radler CI et al (2011) Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. Br J Ophthalmol 95(3):370–375. https://doi.org/10.1136/bjo.2009.176305

    Article  PubMed  Google Scholar 

  12. Gasparini SJ, Llonch S, Borsch O, Ader M (2019) Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog Retin Eye Res 69:1–37. https://doi.org/10.1016/j.preteyeres.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  13. Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65(2):150–164. https://doi.org/10.1016/j.neuron.2009.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gouras P, Flood MT, Kjeldbye H (1984) Transplantation of cultured human retinal cells to monkey retina. An Acad Bras Cienc 56(4):431–443

    CAS  PubMed  Google Scholar 

  15. Kalargyrou AA, Basche M, Hare A et al (2021) Nanotube-like processes facilitate material transfer between photoreceptors. EMBO Reports 22(11):e53732. https://doi.org/10.15252/embr.202153732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kashani AH et al (2019) Subretinal implantation of a human embryonic stem cell-derived retinal pigment epithelium monolayer in a porcine model. Adv Exp Med Biol 1185:569–574. https://doi.org/10.1007/978-3-030-27378-1_93

    Article  CAS  PubMed  Google Scholar 

  17. Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T (2020) Emerging approaches for restoration of hearing and vision. Physiol Rev 100(4):1467–1525. https://doi.org/10.1152/physrev.00035.2019

    Article  CAS  PubMed  Google Scholar 

  18. Lagali PS, Balya D, Awatramani GB et al (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11(6):667–675. https://doi.org/10.1038/nn.2117

    Article  CAS  PubMed  Google Scholar 

  19. Liu Z et al (2021) Surgical transplantation of human RPE stem cell-derived RPE monolayers into non-human primates with immunosuppression. Stem Cell Reports 16(2):237–251. https://doi.org/10.1016/j.stemcr.2020.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahato B, Kaya KD, Fan Y et al (2020) Pharmacologic fibroblast reprogramming into photoreceptors restores vision. Nature 581(7806):83–88. https://doi.org/10.1038/s41586-020-2201-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mandai M, Watanabe A, Kurimoto Y et al (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 376(11):1038–1046. https://doi.org/10.1056/NEJMoa1608368

    Article  CAS  PubMed  Google Scholar 

  22. Mehat MS et al (2018) Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology 125(11):1765–1775. https://doi.org/10.1016/j.ophtha.2018.04.037

    Article  PubMed  Google Scholar 

  23. Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin‑2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100(24):13940–13945. https://doi.org/10.1073/pnas.1936192100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakano T, Ando S, Takata N et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785. https://doi.org/10.1016/j.stem.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  25. Nakatsuji N, Nakajima F, Tokunaga K (2008) HLA-haplotype banking and iPS cells. Nat Biotechnol 26(7):739–740. https://doi.org/10.1038/nbt0708-739

    Article  CAS  PubMed  Google Scholar 

  26. Pearson RA, Gonzalez-Cordero A, West EL et al (2016) Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun 7:13029. https://doi.org/10.1038/ncomms13029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Santos-Ferreira T, Llonch S, Borsch O, Postel K, Haas J, Ader M (2016) Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange. Nat Commun 7:13028. https://doi.org/10.1038/ncomms13028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516. https://doi.org/10.1016/S0140-6736(14)61376-3

    Article  PubMed  Google Scholar 

  29. Seko Y, Azuma N, Ishii T et al (2014) Derivation of human differential photoreceptor cells from adult human dermal fibroblasts by defined combinations of CRX, RAX, OTX2 and NEUROD. Genes Cells 19(3):198–208. https://doi.org/10.1111/gtc.12127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881. https://doi.org/10.1152/physrev.00021.2004

    Article  CAS  PubMed  Google Scholar 

  31. Sugita S, Mandai M, Kamao H, Takahashi M (2021) Immunological aspects of RPE cell transplantation. Prog Retin Eye Res 84:100950. https://doi.org/10.1016/j.preteyeres.2021.100950

    Article  CAS  PubMed  Google Scholar 

  32. Sung Y et al (2021) Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients. Br J Ophthalmol 105(6):829–837. https://doi.org/10.1136/bjophthalmol-2020-316225

    Article  PubMed  Google Scholar 

  33. Takagi S et al (2019) Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina 3(10):850–859. https://doi.org/10.1016/j.oret.2019.04.021

    Article  PubMed  Google Scholar 

  34. Thomas BB, Lin B, Martinez-Camarillo JC et al (2021) Co-grafts of human embryonic stem cell derived retina organoids and retinal pigment epithelium for retinal reconstruction in immunodeficient retinal degenerate royal college of surgeons rats. Front Neurosci 15:752958. https://doi.org/10.3389/fnins.2021.752958

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vitillo L, Tovell VE, Coffey P (2020) Treatment of age-related macular degeneration with pluripotent stem cell-derived retinal pigment epithelium. Curr Eye Res 45(3):361–371. https://doi.org/10.1080/02713683.2019.1691237

    Article  PubMed  Google Scholar 

  36. West EL, Pearson RA, Barker SE et al (2010) Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells 28(11):1997–2007. https://doi.org/10.1002/stem.520

    Article  CAS  PubMed  Google Scholar 

  37. Zhu J, Reynolds J, Garcia T et al (2018) Generation of transplantable retinal photoreceptors from a current good manufacturing practice-manufactured human induced pluripotent stem cell line. Stem Cells Transl Med 7(2):210–219. https://doi.org/10.1002/sctm.17-0205

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Alle Bilder wurden mit BioRender.com erstellt.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Volker Busskamp or Sarah Kunze.

Ethics declarations

Interessenkonflikt

V. Busskamp und S. Kunze geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Dieser Beitrag zitiert Studien an Menschen oder Tieren. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busskamp, V., Kunze, S. Optogenetik und Zellersatz in der Retinologie. Ophthalmologie 119, 910–918 (2022). https://doi.org/10.1007/s00347-022-01631-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-022-01631-5

Schlüsselwörter

Keywords

Navigation